Two fractional order Langevin equation with new chaotic dynamics
Year 2023,
, 663 - 685, 30.09.2023
Meriem Mansouria Belhamıtı
,
Zoubir Dahmani
,
Mehmet Zeki Sarıkaya
Abstract
In the present paper, we introduce a two-order nonlinear fractional sequential Langevin equation using the derivatives of Atangana-Baleanu and Caputo-Fabrizio. The existence of solutions is proven using a fixed point theorem under a weak topology, and an illustrative example is then given. Furthermore, we present new fractional versions of the Adams-Bashforth three-step approach for the Atangana-Baleanu and Caputo derivatives. New nonlinear chaotic dynamics are performed by numerical simulations.
References
- Ahmad, B., Nieto, J.J., Alsaedi, A., El-Shahed, M., A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl., 13(2) (2012), 599-606. https://doi.org/10.1016/j.nonrwa.2011.07.052.
- Almeida, R., Bastos, R.O., Teresa, M., Monteiro, T., Modeling some real phenomena by fractional differential equations, Mathematical Methods in the Applied Sciences, 39(16) (2015). https://doi.org/10.1002/mma.3818.
- Atangana, A., Baleanu, D., Caputo - Fabrizio derivative applied to groundwater flow within a confined aquifer, J. Eng. Mech., (2016). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091.
- Atangana, A., Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel, Thermal Science, 20 (2016), 763-769. https://doi.org/10.2298/TSCI160111018A.
- Atangana, A., On the new fractional derivative and application to nonlinear Fisher’s reaction diffusion equation, Appl. Math. Comput., 273 (2015), 948-56. https://doi.org/10.1016/j.amc.2015.10.021.
- Atangana, A., Alqahtani, R.T., Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation, Adv. Diff. Equ., 2016(1) (2016), 1-13. https://doi.org/10.1186/s13662-016-0871-x.
- Atangana, A., Koca, B.I., Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons and Fractals, 89 (2016), 447-454. https://doi.org/10.1016/j.chaos.2016.02.012
- Belhamiti, M.M., Dahmani, Z., Agarwal, P., Chaotic Jerk Circuit: existence and stability of solutions for a fractional model, Progr. Fract. Differ. Appl., Accepted (2022).
- Ben Amar, A., O’Regan, D., Topological Fixed Point Theory for Singlevalued and Multivalued Mappings and Applications, Springer International Publishing Switzerland, 2016. https://doi.org/10.1007/978-3-319-31948-3.
- Bartuccelli, M.V., Gentile, G., Georgiou, K.V., On the dynamics of a vertically driven damped planar pendulum, The Royal Society, Physical and Engineering Sciences, 457 (2001), 3007-3022. https://doi.org/10.1098/rspa.2001.0841.
- Bezziou, M., Dahmani, Z., Jebril, I., Belhamiti, M.M., Solvability for a differential system of Duffing type via Caputo-Hadamard approach, Appl. Math. Inf. Sci., 16(2) (2022), 341-352.
- Caputo, M., Fabrizio, M., Applications of new time and spatial fractional derivatives with exponential kernels, Progress in Fractional Differentiation and Applications, 2(1) (2016), 1-11. https://doi.org/10.18576/pfda/020101.
- Caputo, M., Fabrizio, M., A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1(2) (2015), 73-85.
- Cao, H., Seoane, J.M., Sanju´an, M.A.F., Symmetry-breaking analysis for the general Helmholtz Duffing oscillator, Chaos, Solitons and Fractals, 34 (2007), 197-212.
- Chen, A., Chen, Y., Existence of solutions to nonlinear Langevin equation involving two fractional orders with boundary value conditions, Boundary Value Problems, 3 (2011). https://doi.org/10.1155/2011/516481.
- Chen, X., Fu, X., Chaos control in a special pendulum system for ultra-subharmonic resonance, American Institute of Mathematical Sciences, February, 26(2) (2021), 847-860. https://doi.org/10.3934/dcdsb.2020144.
- Dahmani, Z., Belhamiti, M.M., Sarıkaya, M.Z., A three fractional order jerk equation with anti periodic conditions, Submitted paper, (2020).
- Gouari, Y., Dahmani, Z. , Belhamiti, M.M., Sarıkaya, M.Z., Uniqueness of solutions, stability and simulations for a differential problem involving convergent series and time variable singularities, Rocky Mountain Journal of Mathematics, (2021). https://doi.org/10.22541/au.163673427.78470853/v1.
- Hirsch, M.W., Smale, S., Devaney, R.L., Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier, USA, 2004.
- Jeribi, A., Krichen, B., Nonlinear Functional Analysis in Banach Spaces and Banach Algebras Fixed Point Theory under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications, Taylor & Francis Group, LLC., 2016.
- Jeribi, A., Hammami, M.A., Masmoudi, A., Applied mathematics in Tunisia, International Conference on Advances in Applied Mathematics (ICAAM), Hammamet, Tunisia, (2013).
- Kumar, S., Rashidi, M.M., New analytical method for gas dynamics equation arising in shock fronts, Comput. Phys. Commun., 185(7) (2014), 1947-54. https://doi.org/10.1016/j.cpc.2014.03.025.
- Losada, J., Nieto, J.J., Properties of a new fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 2 (2015), 87-92.
- Kpomahou, Y.J.F., Hinvi, L.A., Ad´echinan, J.A., Miwadinou, C.H., The mixed Rayleigh Lienard oscillator driven by parametric periodic pamping and external excitation, Hindawi Complexity, (2021). https://doi.org/10.1155/2021/6631094.
- Owolabi, K.M., Analysis and Simulation of Herd Behaviour Dynamics Based on Derivative with Nonlocal and Nonsingular Kernel, Elsevier, 2021. https://doi.org/10.1016/j.rinp.2021.103941.
- Mainardi, F., Why the Mittag-Leffler function can be considered the queen function of the fractional calculus?, Entropy, 22(12) (2020), 1359. https://doi.org/10.3390/e22121359.
- Owolabi, K.M., Atangana, A., Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative, Chaos, Solitons and Fractals, 105 (2017), 111–119.
- Owolabi, K.M., Atangana, A., On the formulation of fractional Adams-Bashforth method with Atangana-Baleanu-Caputo derivative to model chaotic problems, (2021). https://doi.org/10.1063/1.5085490.
- Peters, R.D., Chaotic pendulum based on torsion and gravity in opposition, American Journal of Physics, 63 (1995), 1128. https://doi.org/10.1119/1.18019.
- Rahayu, S.U., Tamba, T., Tarigan, K., Investigation of chaos behaviour on damped and driven nonlinear simple pendulum motion simulated by mathematica, Journal of Physics Conference Series, 1811(1) 012014 (2021). https://doi.org/10.1088/1742-6596/1811/1/012014.
- Salema, A., Alzahrania, F., Almaghamsia, L., Langevin equation involving one fractional order with three point boundary conditions, Nonlinear Sci. Appl., 12 (2019), 791-798. https://doi.org/10.22436/jnsa.012.12.02.
- Singh, H., Kumar, D., Baleanu, D., Methods of Mathematical Modelling, Mathematics and Its Applications: Modelling, Engineering, and Social Sciences, Taylor & Francis Group, 2019. https://doi.org/10.1201/9780429274114.
- Atanackovic , M.T., Pilipovic , S., Stankovic , B., Zorica, D., Fractional Calculus with Applications in Mechanics, John Wiley & Sons, 2014. https://doi.org/10.1002/9781118577530.
- Tablennehas, K., Dahmani, Z., Belhamiti, M.M., Abdelnebi, A., Sarıkaya, M.Z., On a fractional problem of Lane-Emden type: Ulam type stabilities and numerical behaviors, Advances in Difference Equations, (2021).
- Tarasov, V., No nonlocality no fractional derivative, Communications in Nonlinear Science and Numerical Simulation, 62 (2018). https://doi.org/10.1016/j.cnsns.2018.02.019.
- Zaslavsky, G.M., Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, 2005.
Year 2023,
, 663 - 685, 30.09.2023
Meriem Mansouria Belhamıtı
,
Zoubir Dahmani
,
Mehmet Zeki Sarıkaya
References
- Ahmad, B., Nieto, J.J., Alsaedi, A., El-Shahed, M., A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl., 13(2) (2012), 599-606. https://doi.org/10.1016/j.nonrwa.2011.07.052.
- Almeida, R., Bastos, R.O., Teresa, M., Monteiro, T., Modeling some real phenomena by fractional differential equations, Mathematical Methods in the Applied Sciences, 39(16) (2015). https://doi.org/10.1002/mma.3818.
- Atangana, A., Baleanu, D., Caputo - Fabrizio derivative applied to groundwater flow within a confined aquifer, J. Eng. Mech., (2016). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091.
- Atangana, A., Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel, Thermal Science, 20 (2016), 763-769. https://doi.org/10.2298/TSCI160111018A.
- Atangana, A., On the new fractional derivative and application to nonlinear Fisher’s reaction diffusion equation, Appl. Math. Comput., 273 (2015), 948-56. https://doi.org/10.1016/j.amc.2015.10.021.
- Atangana, A., Alqahtani, R.T., Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation, Adv. Diff. Equ., 2016(1) (2016), 1-13. https://doi.org/10.1186/s13662-016-0871-x.
- Atangana, A., Koca, B.I., Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons and Fractals, 89 (2016), 447-454. https://doi.org/10.1016/j.chaos.2016.02.012
- Belhamiti, M.M., Dahmani, Z., Agarwal, P., Chaotic Jerk Circuit: existence and stability of solutions for a fractional model, Progr. Fract. Differ. Appl., Accepted (2022).
- Ben Amar, A., O’Regan, D., Topological Fixed Point Theory for Singlevalued and Multivalued Mappings and Applications, Springer International Publishing Switzerland, 2016. https://doi.org/10.1007/978-3-319-31948-3.
- Bartuccelli, M.V., Gentile, G., Georgiou, K.V., On the dynamics of a vertically driven damped planar pendulum, The Royal Society, Physical and Engineering Sciences, 457 (2001), 3007-3022. https://doi.org/10.1098/rspa.2001.0841.
- Bezziou, M., Dahmani, Z., Jebril, I., Belhamiti, M.M., Solvability for a differential system of Duffing type via Caputo-Hadamard approach, Appl. Math. Inf. Sci., 16(2) (2022), 341-352.
- Caputo, M., Fabrizio, M., Applications of new time and spatial fractional derivatives with exponential kernels, Progress in Fractional Differentiation and Applications, 2(1) (2016), 1-11. https://doi.org/10.18576/pfda/020101.
- Caputo, M., Fabrizio, M., A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1(2) (2015), 73-85.
- Cao, H., Seoane, J.M., Sanju´an, M.A.F., Symmetry-breaking analysis for the general Helmholtz Duffing oscillator, Chaos, Solitons and Fractals, 34 (2007), 197-212.
- Chen, A., Chen, Y., Existence of solutions to nonlinear Langevin equation involving two fractional orders with boundary value conditions, Boundary Value Problems, 3 (2011). https://doi.org/10.1155/2011/516481.
- Chen, X., Fu, X., Chaos control in a special pendulum system for ultra-subharmonic resonance, American Institute of Mathematical Sciences, February, 26(2) (2021), 847-860. https://doi.org/10.3934/dcdsb.2020144.
- Dahmani, Z., Belhamiti, M.M., Sarıkaya, M.Z., A three fractional order jerk equation with anti periodic conditions, Submitted paper, (2020).
- Gouari, Y., Dahmani, Z. , Belhamiti, M.M., Sarıkaya, M.Z., Uniqueness of solutions, stability and simulations for a differential problem involving convergent series and time variable singularities, Rocky Mountain Journal of Mathematics, (2021). https://doi.org/10.22541/au.163673427.78470853/v1.
- Hirsch, M.W., Smale, S., Devaney, R.L., Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier, USA, 2004.
- Jeribi, A., Krichen, B., Nonlinear Functional Analysis in Banach Spaces and Banach Algebras Fixed Point Theory under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications, Taylor & Francis Group, LLC., 2016.
- Jeribi, A., Hammami, M.A., Masmoudi, A., Applied mathematics in Tunisia, International Conference on Advances in Applied Mathematics (ICAAM), Hammamet, Tunisia, (2013).
- Kumar, S., Rashidi, M.M., New analytical method for gas dynamics equation arising in shock fronts, Comput. Phys. Commun., 185(7) (2014), 1947-54. https://doi.org/10.1016/j.cpc.2014.03.025.
- Losada, J., Nieto, J.J., Properties of a new fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 2 (2015), 87-92.
- Kpomahou, Y.J.F., Hinvi, L.A., Ad´echinan, J.A., Miwadinou, C.H., The mixed Rayleigh Lienard oscillator driven by parametric periodic pamping and external excitation, Hindawi Complexity, (2021). https://doi.org/10.1155/2021/6631094.
- Owolabi, K.M., Analysis and Simulation of Herd Behaviour Dynamics Based on Derivative with Nonlocal and Nonsingular Kernel, Elsevier, 2021. https://doi.org/10.1016/j.rinp.2021.103941.
- Mainardi, F., Why the Mittag-Leffler function can be considered the queen function of the fractional calculus?, Entropy, 22(12) (2020), 1359. https://doi.org/10.3390/e22121359.
- Owolabi, K.M., Atangana, A., Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative, Chaos, Solitons and Fractals, 105 (2017), 111–119.
- Owolabi, K.M., Atangana, A., On the formulation of fractional Adams-Bashforth method with Atangana-Baleanu-Caputo derivative to model chaotic problems, (2021). https://doi.org/10.1063/1.5085490.
- Peters, R.D., Chaotic pendulum based on torsion and gravity in opposition, American Journal of Physics, 63 (1995), 1128. https://doi.org/10.1119/1.18019.
- Rahayu, S.U., Tamba, T., Tarigan, K., Investigation of chaos behaviour on damped and driven nonlinear simple pendulum motion simulated by mathematica, Journal of Physics Conference Series, 1811(1) 012014 (2021). https://doi.org/10.1088/1742-6596/1811/1/012014.
- Salema, A., Alzahrania, F., Almaghamsia, L., Langevin equation involving one fractional order with three point boundary conditions, Nonlinear Sci. Appl., 12 (2019), 791-798. https://doi.org/10.22436/jnsa.012.12.02.
- Singh, H., Kumar, D., Baleanu, D., Methods of Mathematical Modelling, Mathematics and Its Applications: Modelling, Engineering, and Social Sciences, Taylor & Francis Group, 2019. https://doi.org/10.1201/9780429274114.
- Atanackovic , M.T., Pilipovic , S., Stankovic , B., Zorica, D., Fractional Calculus with Applications in Mechanics, John Wiley & Sons, 2014. https://doi.org/10.1002/9781118577530.
- Tablennehas, K., Dahmani, Z., Belhamiti, M.M., Abdelnebi, A., Sarıkaya, M.Z., On a fractional problem of Lane-Emden type: Ulam type stabilities and numerical behaviors, Advances in Difference Equations, (2021).
- Tarasov, V., No nonlocality no fractional derivative, Communications in Nonlinear Science and Numerical Simulation, 62 (2018). https://doi.org/10.1016/j.cnsns.2018.02.019.
- Zaslavsky, G.M., Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, 2005.