Research Article
BibTex RIS Cite

Compositions of integers and Fibonacci numbers

Year 2024, , 178 - 191, 16.03.2024
https://doi.org/10.31801/cfsuasmas.1144430

Abstract

In this paper, we deal with the compositions of the integers. We present the decompositions for both the composition sets and the odd composition sets of the integers. Thus the decompositions provide us to have not only an alternative proof of some well known identies but also many new identities for Fibonacci numbers and Lucas numbers. Thus we investigate the generating functions for the product sum of the odd composition sets of the integers and attain some functional equations.

Supporting Institution

Supported by the Scientific Research Project Administration of Akdeniz University

Project Number

Research Project-5006

References

  • Agarwal, A. K., n-Colour composition, Indian J. Pure Appl. Math., 31(11) (2000), 1421-1427.
  • Agarwal, A. K., Andrews, G. E., Rogers-Ramanujan identities for partitions with “N copies of N”, J. Combin. Theory Ser. A., 45(1) (1987), 40-49.
  • Al, B., Alkan, M., Some Relations Between Partitions and Fibonacci Numbers, In: Proceedings Book of the 2nd Mediterranean International Conference of Pure & Applied Mathematics and Related Areas (MICOPAM 2019) (Ed. by Y. Simsek, A. Bayad, M. Alkan, I. Kucukoglu and O. Ones), Antalya, Turkey, August 28-31, 2019, 14-17; ISBN: 978-2-491766-00-9.
  • Al, B., Alkan, M., On relations for the partitions of numbers, Filomat, 34(2) (2020), 567–574. DOI:10.2298/FIL2002567A
  • Al, B., Alkan, M., A Note on the Composition of a Positive Integer whose Parts are Odd Integers, International Conference on Artificial Intelligence and Applied Mathematics in Engineering Abstract Book (2022), 141. https://icaiame.com/wpcontent/uploads/2022/06/ICAIAME-2022-Accepted-Abstracts-E-Book.pdf
  • Al, B., Alkan, M., A Note on Color Compositions and the Patterns, In: Proceedings Book of the 5th Mediterranean International Conference of Pure & Applied Mathematics and Related Areas (MICOPAM 2022), 2022, 158-161. ISBN: 978-625-00-0917-8
  • Andrews, G. E., The Theory of Partitions, Addison-Wesley Publishing, New York, 1976.
  • Andrews, G. E., Erikson, K., Integer Partitions, Cambridge University Press, Cambridge, 2004.
  • Andrews, G. E., Hirschhorn, M. D., Sellers, J. A., Arithmetic properties of partitions with even parts distinct, Ramanujan Journal, 23(1–3) (2010), 169–181. DOI:10.1007/s11139-009-9158-0
  • Apostol, T. M., On the Lerch Zeta function, Pacific J. Math., 1 (1951), 161–167. DOI:10.2140/pjm.1951.1.161
  • Apostol, T. M., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
  • Archibald, M., Blecher, A., Knopfmacher, A., Inversions and parity in compositions of integers, Journal of Integer Sequences, 23 (2020). https://cs.uwaterloo.ca/journals/JIS/VOL23/Archibald/arch3.pdf
  • Birmajer, D., Gil, J. B., Weiner, M. M. D., (an + b)-color compositions, arXiv:1707.07798.
  • Chen, S. C., On the number of partitions with distinct even parts, Discrete Math., 311 (2011), 940-943. DOI:10.1016/j.disc.2011.02.025
  • Euler, L., Introduction to Analysis of the Infinite, Vol. 1, Springer-Verlag, 1988.
  • Ewell, J. A., Recurrences for the partition function and its relatives, Rocky Mountain Journal of Mathematics, 34(2) (2004). DOI:10.1216/rmjm/1181069871
  • Gessel I. M., Li, J., Compositions and Fibonacci identities, Journal of Integer Sequences, 16 (2013). DOI:10.48550/arXiv.1303.1366
  • Gil, B., Tomosko, J. A., Fibonacci colored compositions and applications, arXiv:2108.06462.
  • Gupta, H., Partitions - A Survey, Journal of Research of the Notional Bureau of Standards-B. Mathematical Sciences, 74B(1) (1970).
  • Heubach, S., Mansour, T., Compositions of n with parts in a set, Congr. Numer., 168 (2004), 127–143.
  • Heubach, S., Mansour, T., Combinatorics of Compositions and Words, CRC Press, 2010.
  • Hoggatt, V. E., Lind, D. A., Fibonacci and binomial properties of weighted compositions, J. Combin. Theory., 4 (1968), 121-124. DOI:10.1016/S0021-9800(68)80037-7
  • Horadam, A. F., Jacobsthal representation numbers, Fibonacci Quarterly, 34(1) (1996), 40-54.
  • Janjic, M., Some formulas for numbers of restricted words, Journal of Integer Sequences, 20 (2017).
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, Canada: Wiley-Interscience Publication, 2001, 6-38.
  • Merzouka, H., Boussayoudb, A., Chelgham, M., Generating functions of generalized Tribonacci and Tricobsthal polynomials, Montes Taurus J. Pure Appl. Math., 2(2), (2020), 7–37.
  • Shapcott, C., C-color compositions and palindromes, Fibonacci Quart., 50(4) (2012), 297-303.
  • Stanley, R. P., Enumerative Combinatorics, Vol 1, 2nd edition, Cambridge University Press, 2011.
  • Simsek, Y., Generating functions for finite sums involving higher powers of binomial coeffients: Analysis of hypergeometric functions inculudinf new families of polynomilies and numbers, J.Math. Anal Appl., 477 (2019), 2328-1352.
  • Ozdemir, G., Simsek, Y., Milovanovic, G. V., Generating functions for special polynomials and numbers including Apostos-Type and Humbert-Type polynomials, Mediterr. J. Math., 14(117) (2017). DOI:10.1007/s00009-017-0918-6
  • Wilf, H. S., Generating Functionology, Academic Press, Inc., 1994.
Year 2024, , 178 - 191, 16.03.2024
https://doi.org/10.31801/cfsuasmas.1144430

Abstract

Supporting Institution

Akdeniz University

Project Number

Research Project-5006

References

  • Agarwal, A. K., n-Colour composition, Indian J. Pure Appl. Math., 31(11) (2000), 1421-1427.
  • Agarwal, A. K., Andrews, G. E., Rogers-Ramanujan identities for partitions with “N copies of N”, J. Combin. Theory Ser. A., 45(1) (1987), 40-49.
  • Al, B., Alkan, M., Some Relations Between Partitions and Fibonacci Numbers, In: Proceedings Book of the 2nd Mediterranean International Conference of Pure & Applied Mathematics and Related Areas (MICOPAM 2019) (Ed. by Y. Simsek, A. Bayad, M. Alkan, I. Kucukoglu and O. Ones), Antalya, Turkey, August 28-31, 2019, 14-17; ISBN: 978-2-491766-00-9.
  • Al, B., Alkan, M., On relations for the partitions of numbers, Filomat, 34(2) (2020), 567–574. DOI:10.2298/FIL2002567A
  • Al, B., Alkan, M., A Note on the Composition of a Positive Integer whose Parts are Odd Integers, International Conference on Artificial Intelligence and Applied Mathematics in Engineering Abstract Book (2022), 141. https://icaiame.com/wpcontent/uploads/2022/06/ICAIAME-2022-Accepted-Abstracts-E-Book.pdf
  • Al, B., Alkan, M., A Note on Color Compositions and the Patterns, In: Proceedings Book of the 5th Mediterranean International Conference of Pure & Applied Mathematics and Related Areas (MICOPAM 2022), 2022, 158-161. ISBN: 978-625-00-0917-8
  • Andrews, G. E., The Theory of Partitions, Addison-Wesley Publishing, New York, 1976.
  • Andrews, G. E., Erikson, K., Integer Partitions, Cambridge University Press, Cambridge, 2004.
  • Andrews, G. E., Hirschhorn, M. D., Sellers, J. A., Arithmetic properties of partitions with even parts distinct, Ramanujan Journal, 23(1–3) (2010), 169–181. DOI:10.1007/s11139-009-9158-0
  • Apostol, T. M., On the Lerch Zeta function, Pacific J. Math., 1 (1951), 161–167. DOI:10.2140/pjm.1951.1.161
  • Apostol, T. M., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
  • Archibald, M., Blecher, A., Knopfmacher, A., Inversions and parity in compositions of integers, Journal of Integer Sequences, 23 (2020). https://cs.uwaterloo.ca/journals/JIS/VOL23/Archibald/arch3.pdf
  • Birmajer, D., Gil, J. B., Weiner, M. M. D., (an + b)-color compositions, arXiv:1707.07798.
  • Chen, S. C., On the number of partitions with distinct even parts, Discrete Math., 311 (2011), 940-943. DOI:10.1016/j.disc.2011.02.025
  • Euler, L., Introduction to Analysis of the Infinite, Vol. 1, Springer-Verlag, 1988.
  • Ewell, J. A., Recurrences for the partition function and its relatives, Rocky Mountain Journal of Mathematics, 34(2) (2004). DOI:10.1216/rmjm/1181069871
  • Gessel I. M., Li, J., Compositions and Fibonacci identities, Journal of Integer Sequences, 16 (2013). DOI:10.48550/arXiv.1303.1366
  • Gil, B., Tomosko, J. A., Fibonacci colored compositions and applications, arXiv:2108.06462.
  • Gupta, H., Partitions - A Survey, Journal of Research of the Notional Bureau of Standards-B. Mathematical Sciences, 74B(1) (1970).
  • Heubach, S., Mansour, T., Compositions of n with parts in a set, Congr. Numer., 168 (2004), 127–143.
  • Heubach, S., Mansour, T., Combinatorics of Compositions and Words, CRC Press, 2010.
  • Hoggatt, V. E., Lind, D. A., Fibonacci and binomial properties of weighted compositions, J. Combin. Theory., 4 (1968), 121-124. DOI:10.1016/S0021-9800(68)80037-7
  • Horadam, A. F., Jacobsthal representation numbers, Fibonacci Quarterly, 34(1) (1996), 40-54.
  • Janjic, M., Some formulas for numbers of restricted words, Journal of Integer Sequences, 20 (2017).
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, Canada: Wiley-Interscience Publication, 2001, 6-38.
  • Merzouka, H., Boussayoudb, A., Chelgham, M., Generating functions of generalized Tribonacci and Tricobsthal polynomials, Montes Taurus J. Pure Appl. Math., 2(2), (2020), 7–37.
  • Shapcott, C., C-color compositions and palindromes, Fibonacci Quart., 50(4) (2012), 297-303.
  • Stanley, R. P., Enumerative Combinatorics, Vol 1, 2nd edition, Cambridge University Press, 2011.
  • Simsek, Y., Generating functions for finite sums involving higher powers of binomial coeffients: Analysis of hypergeometric functions inculudinf new families of polynomilies and numbers, J.Math. Anal Appl., 477 (2019), 2328-1352.
  • Ozdemir, G., Simsek, Y., Milovanovic, G. V., Generating functions for special polynomials and numbers including Apostos-Type and Humbert-Type polynomials, Mediterr. J. Math., 14(117) (2017). DOI:10.1007/s00009-017-0918-6
  • Wilf, H. S., Generating Functionology, Academic Press, Inc., 1994.
There are 31 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Busra Al 0000-0002-1637-5355

Mustafa Alkan 0000-0002-4452-4442

Project Number Research Project-5006
Publication Date March 16, 2024
Submission Date July 17, 2022
Acceptance Date September 15, 2023
Published in Issue Year 2024

Cite

APA Al, B., & Alkan, M. (2024). Compositions of integers and Fibonacci numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(1), 178-191. https://doi.org/10.31801/cfsuasmas.1144430
AMA Al B, Alkan M. Compositions of integers and Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2024;73(1):178-191. doi:10.31801/cfsuasmas.1144430
Chicago Al, Busra, and Mustafa Alkan. “Compositions of Integers and Fibonacci Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 1 (March 2024): 178-91. https://doi.org/10.31801/cfsuasmas.1144430.
EndNote Al B, Alkan M (March 1, 2024) Compositions of integers and Fibonacci numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 1 178–191.
IEEE B. Al and M. Alkan, “Compositions of integers and Fibonacci numbers”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 1, pp. 178–191, 2024, doi: 10.31801/cfsuasmas.1144430.
ISNAD Al, Busra - Alkan, Mustafa. “Compositions of Integers and Fibonacci Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/1 (March 2024), 178-191. https://doi.org/10.31801/cfsuasmas.1144430.
JAMA Al B, Alkan M. Compositions of integers and Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:178–191.
MLA Al, Busra and Mustafa Alkan. “Compositions of Integers and Fibonacci Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 1, 2024, pp. 178-91, doi:10.31801/cfsuasmas.1144430.
Vancouver Al B, Alkan M. Compositions of integers and Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(1):178-91.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.