Multigrid methods for non coercive variational inequalities
Year 2024,
, 222 - 234, 16.03.2024
Nour El Houda Nesba
,
Mohammed Beggas
Abstract
In this study, our examination centers around the numerical resolution of non-coercive issues using a multi-grid approach. Our particular emphasis is directed towards employing multi-grid methodologies to tackle non-linear variational inequalities. Our primary goal involves confirming the consistent convergence of the multi-grid algorithm. To attain this objective, we make use of fundamental sub-differential calculus and glean insights from the convergence principles of non-linear multi-grid techniques.
References
- Boulbrachene, M., Haiour, M., The finite element approximation of Hamilton-Jacobi- Bellman equations, Computers & Mathematics with Applications, 41(7-8) (2001), 993–1007.
https://www.sciencedirect.com/science/article/pii/S0898122100003345
- Brezzi, F., Caffarelli, L. A., Convergence of the discrete free boundary for finite element approximations, R.A.I.R.O Anal. Numer., 17 (1983), 385-395. https://eudml.org/doc/193422
- Ciarlet, P-G., Raviart, P-A., Maximum principle and uniform convergence for the finite element method, Computer Methods in Applied Mechanics and Engineering, 2(1) (1973), 17–31.
https://doi.org/10.1016/0045-7825(73)90019-4
- Cortey-Dumont, P., On the finite element approximation in the $L^{\infty}$ norm of variational inequalities with nonlinear operators, Numer.Num., 47 (1985), 45-57. https://eudml.org/doc/133022
- Cortey-Dumont, P., Sur I’analyse num´erique des equations de Hamilton-Jacobi-Bellman, Mathematical Methods in The Applied Sciences, 198-209 (1987). https://onlinelibrary.wiley.com/doi/10.1002/mma.1670090115
- Hackbusch, W., Multi-grid Methods and Applicatons, Springer, Berlin- HeidelBerg- New York, 1985. https://link.springer.com/book/10.1007/978-3-662-02427-0
- Hackbusch, W., Mittelmann, H. D., On Multi-grid methods for variational inequalities, Numerische Mathematik, 42 (1983), 65-75 (1983). http://resolver.sub.unigoettingen.de/purl?PPN362160546 0042
- Haiour, M., Etude de la convergence uniforme de la methode multigrilles appliquees aux problemes frontieres libres, PhD thesis, Universite de Annaba-Badji Mokhtar.https://www.pnst.cerist.dz/detail.php?id=19817/
- Hoppe, R. H. W., Multi-grid methods for Hamilton-Jacobi-Bellman equations, Numerische Mathematik, 49(2) (1986), 239–254. https://link.springer.com/article/10.1007/BF01389627
- Hoppe, R. H. W., Multigrid algorithms for variational inequalities, SIAM Journal on Numerical Analysis, 24(5) (1987), 1046–1065. https://www.jstor.org/stable/2157638
- Kinderlehrer, D., Stampacchia, G., An Introduction to Variational Inequalities and their Applications, Academic Press, New York, 1980. https://lib.ugent.be/en/catalog/ebk01:1000000000551554
- Nesba, N. E. H., Beggas, M., Belouafi, M. E., Ahmad, I., Ahmad, H., Askar, S., Multigrid methods for the solution of nonlinear variational inequalities, European Journal of Pure and Applied Mathematics Published by New York Business Global, 16(3) (2023), 1956-1969. https://ejpam.com/index.php/ejpam/article/view/4835
- Reusken, A., Introduction to multigrid methods for elliptic boundary value problems, Inst, fur Geometrie und Praktische Mathematik, (2008). https://www.igpm.rwthaachen.de/Download/reports/reusken/ARpaper53.pdf
- Reusken, A., On maximum norm convergcnce of multigrids methods for elliptic boundary value problems, SIAM J. Numer. Anal, 29(6) (1992), 1569-1578. https://epubs.siam.org/doi/abs/10.1137/0731020
Year 2024,
, 222 - 234, 16.03.2024
Nour El Houda Nesba
,
Mohammed Beggas
References
- Boulbrachene, M., Haiour, M., The finite element approximation of Hamilton-Jacobi- Bellman equations, Computers & Mathematics with Applications, 41(7-8) (2001), 993–1007.
https://www.sciencedirect.com/science/article/pii/S0898122100003345
- Brezzi, F., Caffarelli, L. A., Convergence of the discrete free boundary for finite element approximations, R.A.I.R.O Anal. Numer., 17 (1983), 385-395. https://eudml.org/doc/193422
- Ciarlet, P-G., Raviart, P-A., Maximum principle and uniform convergence for the finite element method, Computer Methods in Applied Mechanics and Engineering, 2(1) (1973), 17–31.
https://doi.org/10.1016/0045-7825(73)90019-4
- Cortey-Dumont, P., On the finite element approximation in the $L^{\infty}$ norm of variational inequalities with nonlinear operators, Numer.Num., 47 (1985), 45-57. https://eudml.org/doc/133022
- Cortey-Dumont, P., Sur I’analyse num´erique des equations de Hamilton-Jacobi-Bellman, Mathematical Methods in The Applied Sciences, 198-209 (1987). https://onlinelibrary.wiley.com/doi/10.1002/mma.1670090115
- Hackbusch, W., Multi-grid Methods and Applicatons, Springer, Berlin- HeidelBerg- New York, 1985. https://link.springer.com/book/10.1007/978-3-662-02427-0
- Hackbusch, W., Mittelmann, H. D., On Multi-grid methods for variational inequalities, Numerische Mathematik, 42 (1983), 65-75 (1983). http://resolver.sub.unigoettingen.de/purl?PPN362160546 0042
- Haiour, M., Etude de la convergence uniforme de la methode multigrilles appliquees aux problemes frontieres libres, PhD thesis, Universite de Annaba-Badji Mokhtar.https://www.pnst.cerist.dz/detail.php?id=19817/
- Hoppe, R. H. W., Multi-grid methods for Hamilton-Jacobi-Bellman equations, Numerische Mathematik, 49(2) (1986), 239–254. https://link.springer.com/article/10.1007/BF01389627
- Hoppe, R. H. W., Multigrid algorithms for variational inequalities, SIAM Journal on Numerical Analysis, 24(5) (1987), 1046–1065. https://www.jstor.org/stable/2157638
- Kinderlehrer, D., Stampacchia, G., An Introduction to Variational Inequalities and their Applications, Academic Press, New York, 1980. https://lib.ugent.be/en/catalog/ebk01:1000000000551554
- Nesba, N. E. H., Beggas, M., Belouafi, M. E., Ahmad, I., Ahmad, H., Askar, S., Multigrid methods for the solution of nonlinear variational inequalities, European Journal of Pure and Applied Mathematics Published by New York Business Global, 16(3) (2023), 1956-1969. https://ejpam.com/index.php/ejpam/article/view/4835
- Reusken, A., Introduction to multigrid methods for elliptic boundary value problems, Inst, fur Geometrie und Praktische Mathematik, (2008). https://www.igpm.rwthaachen.de/Download/reports/reusken/ARpaper53.pdf
- Reusken, A., On maximum norm convergcnce of multigrids methods for elliptic boundary value problems, SIAM J. Numer. Anal, 29(6) (1992), 1569-1578. https://epubs.siam.org/doi/abs/10.1137/0731020