Research Article
BibTex RIS Cite

Testing equality of means in one-way ANOVA using three and four moment approximations

Year 2023, , 587 - 605, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1252070

Abstract

In this study, we focus on two test statistics for testing the equality of treatment means in one-way analysis of variance (ANOVA). The first one is the well known Cochran ($C_{LS}$) test statistic based on least squares (LS) estimators and the second one is robust version of it ($RC_{MML}$) based on modified maximum likelihood (MML) estimators. These two test statistics are asymptotically distributed as chi-square. However, distributions of them are unknown for small samples. Therefore, three-moment chi-square and four moment $F$ approximations to the null distributions of $C_{LS}$ and $RC_{MML}$ are derived inspired by Tiku and Wong [19]. To investigate the small and moderate sample properties of these tests based on the mentioned approximations, an extensive Monte-Carlo simulation study is performed when the underlying distribution is long-tailed symmetric (LTS). Simulation results show that four-moment $F$ approximation provides better approximation than the three-moment chi-square approximation for both $C_{LS}$ and $RC_{MML}$ tests. Therefore, the simulated Type I error rates and powers of the $C_{LS}$ and $RC_{MML}$ test statistics are calculated using four-moment $F$ approximation. According to simulation results, $RC_{MML}$ test is more powerful than the corresponding $C_{LS}$ test.

References

  • Aydoğdu, H., Senoğlu, B., Kara, M., Parameter estimation in geometric process with Weibull distribution. Appl. Math. Comput., 217(6) (2010), 2657-2665. https://doi.org/10.1016/j.amc.2010.08.003
  • Brown, M. B., Forsythe, A. B., The small sample behavior of some statistics which test the equality of several means. Technometrics, 16(1) (1974), 129-132. https://www.tandfonline.com/doi/abs/10.1080/00401706.1974.10489158.
  • Cochran, W. G., Problems arising in the analysis of a series of similar experiments. Suppl. J. R. Stat. Soc, 4(1) (1937), 102-118. https://www.jstor.org/stable/2984123
  • Gamage, J., Weerahandi, S., Size performance of some tests in one way ANOVA, Comm. Statist. Simulation Comput., 27(3) (1998), 625-640. https://www.tandfonline.com/doi/abs/10.1080/03610919808813500
  • Güven, G., Gürer, Ö., Şamkar, H., Şenoglu, B., A fiducial-based approach to the one-way ANOVA in the presence of nonnormality and heterogeneous error variances. J. Stat. Comput. Simul., 89(9) (2019), 1715-1729. https://doi.org/10.1080/00949655.2019.1593985
  • Hampel, F. R., Robust estimation: A condensed partial survey, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 27(2) (1973), 87-104. https://link.springer.com/article/10.1007/BF00536619
  • Hartung, J., Knapp, G., Sinha, B. K., Statistical meta-analysis with applications. John Wiley and Sons (2011).
  • James, G. S., The comparison of several groups of observations when the ratios of the population variances are unknown. Biometrika, 38(3/4) (1951), 324-329. https://doi.org/10.2307/2332578
  • Krishnamoorthy, K., Lu, F., Mathew, T., A parametric bootstrap approach for ANOVA with unequal variances: Fixed and random models. Comput. Stat. Data Anal., 51(12) (2007), 5731-5742. https://doi.org/10.1016/j.csda.2006.09.039
  • Li, X.,Wang, J., Liang, H., Comparison of several means: A fiducial based approach. Comput. Stat. Data Anal., 55(5) (2011), 1993-2002. https://doi.org/10.1016/j.csda.2010.12.009
  • Mehrotra, D. V., Improving the Brown-Forsythe solution to the generalized Behrens-Fisher problem. Commun. Stat. Simul. Comput., 26(3) (1997), 1139-1145. https://doi.org/10.1080/03610919708813431
  • Purutcuoğlu, V., Unit root problems in time series analysis, Master Thesis, Middle East Technical University, 2004.
  • Sürücü, B., Sazak, H. S., Monitoring reliability for a three-parameter Weibull distribution. Reliab. Eng. Syst. Saf., 94(2) (2009), 503-508. https://doi.org/10.1016/j.ress.2008.06.001
  • Schrader, R. M., Hettmansperger, T. P., Robust analysis of variance based upon a likelihood ratio criterion, Biometrika, 67(1) (1980), 93-101. https://doi.org/10.1093/biomet/67.1.93
  • Şenoğlu, B., Tiku, M. L., Analysis of variance in experimental design with nonnormal error distributions. Commun. Stat. Theory Methods, 30(7) (2001), 1335-1352. https://www.tandfonline.com/doi/full/10.1081/STA-100104748
  • Tiku, M. L., Estimating the mean and standard deviation from a censored normal sample. Biometrika, 54(1-2) (1967), 155-165. https://doi.org/10.1093/biomet/54.1-2.155
  • Tiku, M. L., Estimating the parameters of log-normal distribution from censored samples. J. Am. Stat. Assoc, 63(321) (1968), 134-140. https://doi.org/10.1080/01621459.1968.11009228
  • Tiku, M. L., Kumra, S., Expected values and variances and covariances of order statistics for a family of symmetric distributions (Student’st). Selected tables in mathematical statistics, 8 (1981), 141-270.
  • Tiku, M. L., Wong, W. K., Testing for a unit root in an AR (1) model using three and four moment approximations: symmetric distributions, Commun. Stat. Simul. Comput., 27(1) (1998), 185-198. https://www.tandfonline.com/doi/abs/10.1080/03610919808813474
  • Tiku, M. L., Wong, W. K., Bian, G., Estimating parameters in autoregressive models in nonnormal situations: Symmetric innovations. Commun. Stat. Theory Methods, 28(2) (1999), 315-341. https://doi.org/10.1080/03610929908832300
  • Tiku, M. L., Yip, D. Y. N., A four-moment approximation based on the F distribution. Austrian J. Stat., 20(3) (1978), 257-261. https://doi.org/10.1111/j.1467-842X.1978.tb01108.x
  • Weerahandi, S., ANOVA under unequal error variances.Biometrics, 51(2) (1995), 589-599. https://doi.org/10.2307/2532947
  • Welch, B. L., On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4) (1951) , 330-336. https://doi.org/10.2307/2332579
Year 2023, , 587 - 605, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1252070

Abstract

References

  • Aydoğdu, H., Senoğlu, B., Kara, M., Parameter estimation in geometric process with Weibull distribution. Appl. Math. Comput., 217(6) (2010), 2657-2665. https://doi.org/10.1016/j.amc.2010.08.003
  • Brown, M. B., Forsythe, A. B., The small sample behavior of some statistics which test the equality of several means. Technometrics, 16(1) (1974), 129-132. https://www.tandfonline.com/doi/abs/10.1080/00401706.1974.10489158.
  • Cochran, W. G., Problems arising in the analysis of a series of similar experiments. Suppl. J. R. Stat. Soc, 4(1) (1937), 102-118. https://www.jstor.org/stable/2984123
  • Gamage, J., Weerahandi, S., Size performance of some tests in one way ANOVA, Comm. Statist. Simulation Comput., 27(3) (1998), 625-640. https://www.tandfonline.com/doi/abs/10.1080/03610919808813500
  • Güven, G., Gürer, Ö., Şamkar, H., Şenoglu, B., A fiducial-based approach to the one-way ANOVA in the presence of nonnormality and heterogeneous error variances. J. Stat. Comput. Simul., 89(9) (2019), 1715-1729. https://doi.org/10.1080/00949655.2019.1593985
  • Hampel, F. R., Robust estimation: A condensed partial survey, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 27(2) (1973), 87-104. https://link.springer.com/article/10.1007/BF00536619
  • Hartung, J., Knapp, G., Sinha, B. K., Statistical meta-analysis with applications. John Wiley and Sons (2011).
  • James, G. S., The comparison of several groups of observations when the ratios of the population variances are unknown. Biometrika, 38(3/4) (1951), 324-329. https://doi.org/10.2307/2332578
  • Krishnamoorthy, K., Lu, F., Mathew, T., A parametric bootstrap approach for ANOVA with unequal variances: Fixed and random models. Comput. Stat. Data Anal., 51(12) (2007), 5731-5742. https://doi.org/10.1016/j.csda.2006.09.039
  • Li, X.,Wang, J., Liang, H., Comparison of several means: A fiducial based approach. Comput. Stat. Data Anal., 55(5) (2011), 1993-2002. https://doi.org/10.1016/j.csda.2010.12.009
  • Mehrotra, D. V., Improving the Brown-Forsythe solution to the generalized Behrens-Fisher problem. Commun. Stat. Simul. Comput., 26(3) (1997), 1139-1145. https://doi.org/10.1080/03610919708813431
  • Purutcuoğlu, V., Unit root problems in time series analysis, Master Thesis, Middle East Technical University, 2004.
  • Sürücü, B., Sazak, H. S., Monitoring reliability for a three-parameter Weibull distribution. Reliab. Eng. Syst. Saf., 94(2) (2009), 503-508. https://doi.org/10.1016/j.ress.2008.06.001
  • Schrader, R. M., Hettmansperger, T. P., Robust analysis of variance based upon a likelihood ratio criterion, Biometrika, 67(1) (1980), 93-101. https://doi.org/10.1093/biomet/67.1.93
  • Şenoğlu, B., Tiku, M. L., Analysis of variance in experimental design with nonnormal error distributions. Commun. Stat. Theory Methods, 30(7) (2001), 1335-1352. https://www.tandfonline.com/doi/full/10.1081/STA-100104748
  • Tiku, M. L., Estimating the mean and standard deviation from a censored normal sample. Biometrika, 54(1-2) (1967), 155-165. https://doi.org/10.1093/biomet/54.1-2.155
  • Tiku, M. L., Estimating the parameters of log-normal distribution from censored samples. J. Am. Stat. Assoc, 63(321) (1968), 134-140. https://doi.org/10.1080/01621459.1968.11009228
  • Tiku, M. L., Kumra, S., Expected values and variances and covariances of order statistics for a family of symmetric distributions (Student’st). Selected tables in mathematical statistics, 8 (1981), 141-270.
  • Tiku, M. L., Wong, W. K., Testing for a unit root in an AR (1) model using three and four moment approximations: symmetric distributions, Commun. Stat. Simul. Comput., 27(1) (1998), 185-198. https://www.tandfonline.com/doi/abs/10.1080/03610919808813474
  • Tiku, M. L., Wong, W. K., Bian, G., Estimating parameters in autoregressive models in nonnormal situations: Symmetric innovations. Commun. Stat. Theory Methods, 28(2) (1999), 315-341. https://doi.org/10.1080/03610929908832300
  • Tiku, M. L., Yip, D. Y. N., A four-moment approximation based on the F distribution. Austrian J. Stat., 20(3) (1978), 257-261. https://doi.org/10.1111/j.1467-842X.1978.tb01108.x
  • Weerahandi, S., ANOVA under unequal error variances.Biometrics, 51(2) (1995), 589-599. https://doi.org/10.2307/2532947
  • Welch, B. L., On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4) (1951) , 330-336. https://doi.org/10.2307/2332579
There are 23 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Research Articles
Authors

Gamze Guven 0000-0002-8821-3179

Publication Date September 30, 2023
Submission Date February 16, 2023
Acceptance Date March 28, 2023
Published in Issue Year 2023

Cite

APA Guven, G. (2023). Testing equality of means in one-way ANOVA using three and four moment approximations. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(3), 587-605. https://doi.org/10.31801/cfsuasmas.1252070
AMA Guven G. Testing equality of means in one-way ANOVA using three and four moment approximations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2023;72(3):587-605. doi:10.31801/cfsuasmas.1252070
Chicago Guven, Gamze. “Testing Equality of Means in One-Way ANOVA Using Three and Four Moment Approximations”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 3 (September 2023): 587-605. https://doi.org/10.31801/cfsuasmas.1252070.
EndNote Guven G (September 1, 2023) Testing equality of means in one-way ANOVA using three and four moment approximations. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 3 587–605.
IEEE G. Guven, “Testing equality of means in one-way ANOVA using three and four moment approximations”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 3, pp. 587–605, 2023, doi: 10.31801/cfsuasmas.1252070.
ISNAD Guven, Gamze. “Testing Equality of Means in One-Way ANOVA Using Three and Four Moment Approximations”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/3 (September 2023), 587-605. https://doi.org/10.31801/cfsuasmas.1252070.
JAMA Guven G. Testing equality of means in one-way ANOVA using three and four moment approximations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:587–605.
MLA Guven, Gamze. “Testing Equality of Means in One-Way ANOVA Using Three and Four Moment Approximations”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 3, 2023, pp. 587-05, doi:10.31801/cfsuasmas.1252070.
Vancouver Guven G. Testing equality of means in one-way ANOVA using three and four moment approximations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(3):587-605.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.