Research Article
BibTex RIS Cite

Some properties of a class of generalized Janowski-type $q$-starlike functions associated with Opoola $q$-differential operator and $q$-differential subordination

Year 2024, , 349 - 364, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1281348

Abstract

Without qualms, studies show that quantum calculus has received great attention in recent times. This can be attributed to its wide range of applications in many science areas. In this exploration, we study a new qdifferential operator that generalized many known differential operators. The new q-operator and the concept of subordination were afterwards, used to define a new subclass of analytic-univalent functions that invariably consists of several known and new generalizations of starlike functions. Consequently, some geometric properties of the new class were investigated. The properties include coefficient inequality, growth, distortion and covering properties. In fact, we solved some radii problems for the class and also established its subordinating factor sequence property. Indeed, varying some of the involving parameters in our results led to some existing results.

References

  • Alexander, J. W., Functions which map the interior of the unit circle upon simple regions, Ann. Math. Sec. Ser., 17(1) (1915), 12–22. https://doi.org/10.2307/2007212
  • Ali-Shah, S. G., Khan, S. Hussain, S., Darus, M., q-Noor integral operator associated with starlike functions and q-conic domains, AIMS Math., 7(6) (2022), 10842-10859. https://doi.org/10.3934/math.2022606
  • Al-Oboudi, F. M., On univalent functions defined by a generalised Salagean operator, Internat. J. Math. Math. Sci., 2004(27) (2004), 1429–1436. https://doi.org/10.1155/S0161171204108090
  • Al-Shbeil, I., Shaba, T. G., Cˇat¸as, A., Second Hankel determinant for the subclass of biunivalent functions using q-Chebyshev polynomial and Hohlov operator, Fractal Fract., 6(186) (2022), 19 pages. https://doi.org/10.3390/ fractalfract6040186
  • Annaby, M. H., Mansour, Z. S., q-Fractional Calculus and Equations, Springer Science+Business Media, New York, 2012. https://doi.org/10.1007/978-3-642-30898-7
  • Aral, A., Gupta, V., Agarwal, R. P., Applications of q-Calculus in Operator Theory, Springer Science+Business Media, New York, 2013. https://doi.org/10.1007/978-1-4614-6946-9 1
  • Arif, M., Barukab, O. M., Khan, A. S., Abbas, M., The sharp bounds of Hankel determinants for the families of three-leaf-type analytic functions, Fractal Fract. 6(291) (2022), 35 pages. https://doi.org/10.3390/fractalfract6060291
  • Cho, N. E., Kumar, V., Ravichandran, V., A survey on coefficient estimates for Caratheodory functions, Appl. Math. E-Notes, 19 (2019), 370–396. https://www.emis.de/journals/AMEN/2019/AMEN-180518.pdf
  • Friedland, S., Schiffer, M., Global results in control theory with applications to univalent functions, Bull. Amer. Math. Soc., 82(6) (1976), 913–915. https://doi.org/10.1090/S0002-9904-1976-14211-5
  • Goodman, A. W., Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8 (1957), 598–601. https://doi.org/10.1090/S0002-9939-1957-0086879-9
  • Govindaraj, M., Sivasubramanian, S., On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43(3) (2017), 475–487. https://doi.org/10.1007/s10476-017-0206-5
  • Hu, Q., Srivastava, H. M., Ahmad, B., Khan, N., Khan, M. G., Mashwani, W. K., Khan, B., A subclass of multivalent Janowski type q-starlike functions and its consequences, Symmetry, 13(1275) (2021), 14 pages. https://doi.org/10.3390/ sym13071275
  • Jackson, F. H., On q-functions and a certain difference operator, Trans. Roy. Soc. Edinb., 46(2) (1908), 253–281. https://doi.org/10.1017/S0080456800002751
  • Jackson, F. H., On q-difference equation, Amer. J. Math., 32(4) (1910), 305–314. https://doi.org/10.2307/2370183
  • James, A. A., Lasode, A. O., Moses, B. O., Geometric conditions for starlikeness and convexity of univalent functions, IOSR J. Math., 3 (2012), 15–23. https://doi.org/10.9790/5728-0361523
  • Janowski, W., Some extremal problems for certain families of analytic functions I, Ann. Polon. Math., 28(3) (1973), 297–326. https://doi.org/10.4064/ap-28-3-297-326
  • Kac, V., Cheung, P., Quantum Calculus, Springer Science+Business Media, New York, 2002. https://doi.org/10.1007/978-1-4613-0071-7
  • Khan, B., Liu, Z. -G., Shaba, T. G., Araci, S., Khan, N., Khan, M. G., Applications of q-derivative operator to the subclass of bi-univalent functions involving q-Chebyshev polynomials, J. Math., 2022 (2022), Artice ID 8162182, 7 pages. https://doi.org/10.1155/2022/8162182
  • Khan, B., Liu, Z. -G., Srivastava, H. M., Araci, S., Khan, N., Ahmad, Q. Z., Higher-order q-derivatives and their applications to subclasses of multivalent Janowski type q-starlike functions, Adv. Diff. Equ., 2021(440) (2021), 15 pages. https://doi.org/10.1186/s13662-021-03611-6
  • Khan, B., Srivastava, H. M., Arjika, S., Khan, S., Khan, N., Ahmad, Q. Z., A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions, Adv. Differ. Equ., 2021(279) (2021), https://doi.org/10.1186/s13662-021-03441-6
  • Lasode, A. O., Opoola, T. O., On a generalized class of bi-univalent functions defined by subordination and q-derivative operator, Open J. Math. Anal., 5(2) (2021), 46–52. https://doi.org/10.30538/psrp-oma2021.0092
  • Lasode, A. O., Opoola, T. O., Fekete-Szegö estimates and second Hankel determinant for a generalized subfamily of analytic functions defined by q-differential operator, Gulf J. Math., 11(2) (2021), 36–43. https://doi.org/10.56947/gjom.v11i2.583
  • Lasode, A. O., Opoola, T. O., Some investigations on a class of analytic and univalent functions involving q-differentiation, Eur. J. Math. Anal., 2(12) (2022), 1–9. https://doi.org/10.28924/ada/ma.2.12
  • Lasode, A. O., Opoola, T. O., Coefficient problems of a class of q-starlike functions associated with q-analogue of Al-Oboudi-Al-Qahtani integral operator and nephroid domain, J. Class. Anal., 20(1) (2022), 35–47. https://doi.org/10.7153/jca-2022-20-04
  • Lasode, A. O., Opoola, T. O., Al-Shbeil, I., Shaba, T. G., Alsaud, H., Concerning a novel integral operator and a specific category of starlike functions, Mathematics 11(4519) (2023), 17 pages. https://doi.org/10.3390/math11214519
  • Opoola, T. O., On a subclass of univalent functions defined by a generalised differential operator, Internat. J. Math. Anal., 11(18) (2017), 869–876. https://doi.org/10.12988/ijma.2017.7232
  • Oyekan, E. A., Lasode, A. O., Estimates for some classes of analytic functions associated with Pascal distribution series, error function, Bell numbers and q-differential operator, Nigerian J. Math. Appl., 32 (2022), 163–173. http://www.njmaman.com/articles/2022/PAPER14.pdf
  • Oyekan, E. A., Olatunji, T. A., Lasode, A. O., Applications of (p, q)-Gegenbauer polynomials on a family of bi-univalent functions, Earthline J. Math. Sci., 12(2) (2023), 271–284. https://doi.org/10.34198/ejms.12223.271284
  • Oyekan, E. A., Swamy, S. R., Adepoju, P. O. , Olatunji, T. A., Quasi-convolution properties of a new family of close-to-convex functions involving q-p-Opoola differential operator, Intern. J. Math. Trends Technol., 69(5) (2023), 70-77. https://doi.org/10.14445/22315373/IJMTTV69I5P506
  • Polatoğlu, Y., Bolcal, S. M., Şen, A., Yavuz, E., A study on the generalization of Janowski functions in the unit disc, Acta Math. Acad. Paedagog. Nyh´azi., 22 (2006), 27–31.
  • Raza, M., Srivastava, H. M., Arif, M., Ahmad, K., Coefficient estimates for a certain family of analytic functions involving a q-derivative operator, Ramanujan J., 55 (2021), 53–71. https://doi.org/10.1007/s11139-020-00338-y
  • Rensaa, R. J., Univalent functions and frequency analysis, Rocky J. Math., 33(2) (2003), 743–758. https://doi.org/10.1216/rmjm/1181069976
  • Salagean, G. S., Subclasses of univalent functions, Lect. Notes Math., 1013 (1983), 362–372. https://doi.org/10.1007/BFb0066543
  • Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1) (1975), 109–116. https://doi.org/10.1090/S0002-9939-1975-0369678-0
  • Shaba, T. G., Wanas, A. K., Coefficient bounds for a certain families of m-fold symmetric bi-univalent functions associated with q-analogue of Wanas operator, Acta Univ. Apulensis Math. Inform., 68 (2021), 25–37. https://doi.org/10.17114/j.aua.2021.68.03
  • Srivastava, H. M., Operators of basic (or q-)calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., Review Paper, (2020), 18 pages. https://doi.org/10.1007/s40995-019-00815-0
  • Srivastava, H. M., Attiya, A. A., Some subordination results associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math., 5(4) (2004), 1–14. https://www.emis.de/journals/JIPAM/images/113 04 JIPAM/113 04.pdf
  • Srivastava, H. M., Khan, B., Khan, N., Hussain, A., Khan, N., Tahir, M., Applications of certian basic (or q-) derivatives to subclasses of multlivalemt Janowski type q-starlike functions involving conic domain, J. Nonlinear Var. Anal., 5(4) (2021), 531–547. https://doi.org/10.23952/jnva.5.2021.4.03
  • Thomas, D. K., Tuneski, N., Vasudevarao, A., Univalent Functions: A Primer, Walter de Gruyter Inc., Berlin, 2018. https://doi.org/10.1515/9783110560961-001
  • Ul-Haq, M., Raza, M., Arif, M., Khan, Q., Tang, H., q-Analogue of differential subordinations, Math. 7(8) (2019), pp. 16. https://doi.org/10.3390/math7080724
  • Vasilev, A., Univalent functions in the dynamics of viscous flow, Comput. Method Funct. Theory, 1(2) (2001), 311–337. https://doi.org/10.1007/BF03320993
  • Wanas, A. K., Mahdi, A. M., Applications of the q-Wanas operator for a certain family of bi-univalent functions defined by subordination, Asian-Eur. J. Math., 16(6) (2023), 1–16. https://doi.org/ 10.1142/S179355712350095X
  • Wilf, H. S., Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc., 12 (1961), 689–693. https://doi.org/10.1090/S0002-9939-1961-0125214-5
Year 2024, , 349 - 364, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1281348

Abstract

References

  • Alexander, J. W., Functions which map the interior of the unit circle upon simple regions, Ann. Math. Sec. Ser., 17(1) (1915), 12–22. https://doi.org/10.2307/2007212
  • Ali-Shah, S. G., Khan, S. Hussain, S., Darus, M., q-Noor integral operator associated with starlike functions and q-conic domains, AIMS Math., 7(6) (2022), 10842-10859. https://doi.org/10.3934/math.2022606
  • Al-Oboudi, F. M., On univalent functions defined by a generalised Salagean operator, Internat. J. Math. Math. Sci., 2004(27) (2004), 1429–1436. https://doi.org/10.1155/S0161171204108090
  • Al-Shbeil, I., Shaba, T. G., Cˇat¸as, A., Second Hankel determinant for the subclass of biunivalent functions using q-Chebyshev polynomial and Hohlov operator, Fractal Fract., 6(186) (2022), 19 pages. https://doi.org/10.3390/ fractalfract6040186
  • Annaby, M. H., Mansour, Z. S., q-Fractional Calculus and Equations, Springer Science+Business Media, New York, 2012. https://doi.org/10.1007/978-3-642-30898-7
  • Aral, A., Gupta, V., Agarwal, R. P., Applications of q-Calculus in Operator Theory, Springer Science+Business Media, New York, 2013. https://doi.org/10.1007/978-1-4614-6946-9 1
  • Arif, M., Barukab, O. M., Khan, A. S., Abbas, M., The sharp bounds of Hankel determinants for the families of three-leaf-type analytic functions, Fractal Fract. 6(291) (2022), 35 pages. https://doi.org/10.3390/fractalfract6060291
  • Cho, N. E., Kumar, V., Ravichandran, V., A survey on coefficient estimates for Caratheodory functions, Appl. Math. E-Notes, 19 (2019), 370–396. https://www.emis.de/journals/AMEN/2019/AMEN-180518.pdf
  • Friedland, S., Schiffer, M., Global results in control theory with applications to univalent functions, Bull. Amer. Math. Soc., 82(6) (1976), 913–915. https://doi.org/10.1090/S0002-9904-1976-14211-5
  • Goodman, A. W., Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8 (1957), 598–601. https://doi.org/10.1090/S0002-9939-1957-0086879-9
  • Govindaraj, M., Sivasubramanian, S., On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43(3) (2017), 475–487. https://doi.org/10.1007/s10476-017-0206-5
  • Hu, Q., Srivastava, H. M., Ahmad, B., Khan, N., Khan, M. G., Mashwani, W. K., Khan, B., A subclass of multivalent Janowski type q-starlike functions and its consequences, Symmetry, 13(1275) (2021), 14 pages. https://doi.org/10.3390/ sym13071275
  • Jackson, F. H., On q-functions and a certain difference operator, Trans. Roy. Soc. Edinb., 46(2) (1908), 253–281. https://doi.org/10.1017/S0080456800002751
  • Jackson, F. H., On q-difference equation, Amer. J. Math., 32(4) (1910), 305–314. https://doi.org/10.2307/2370183
  • James, A. A., Lasode, A. O., Moses, B. O., Geometric conditions for starlikeness and convexity of univalent functions, IOSR J. Math., 3 (2012), 15–23. https://doi.org/10.9790/5728-0361523
  • Janowski, W., Some extremal problems for certain families of analytic functions I, Ann. Polon. Math., 28(3) (1973), 297–326. https://doi.org/10.4064/ap-28-3-297-326
  • Kac, V., Cheung, P., Quantum Calculus, Springer Science+Business Media, New York, 2002. https://doi.org/10.1007/978-1-4613-0071-7
  • Khan, B., Liu, Z. -G., Shaba, T. G., Araci, S., Khan, N., Khan, M. G., Applications of q-derivative operator to the subclass of bi-univalent functions involving q-Chebyshev polynomials, J. Math., 2022 (2022), Artice ID 8162182, 7 pages. https://doi.org/10.1155/2022/8162182
  • Khan, B., Liu, Z. -G., Srivastava, H. M., Araci, S., Khan, N., Ahmad, Q. Z., Higher-order q-derivatives and their applications to subclasses of multivalent Janowski type q-starlike functions, Adv. Diff. Equ., 2021(440) (2021), 15 pages. https://doi.org/10.1186/s13662-021-03611-6
  • Khan, B., Srivastava, H. M., Arjika, S., Khan, S., Khan, N., Ahmad, Q. Z., A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions, Adv. Differ. Equ., 2021(279) (2021), https://doi.org/10.1186/s13662-021-03441-6
  • Lasode, A. O., Opoola, T. O., On a generalized class of bi-univalent functions defined by subordination and q-derivative operator, Open J. Math. Anal., 5(2) (2021), 46–52. https://doi.org/10.30538/psrp-oma2021.0092
  • Lasode, A. O., Opoola, T. O., Fekete-Szegö estimates and second Hankel determinant for a generalized subfamily of analytic functions defined by q-differential operator, Gulf J. Math., 11(2) (2021), 36–43. https://doi.org/10.56947/gjom.v11i2.583
  • Lasode, A. O., Opoola, T. O., Some investigations on a class of analytic and univalent functions involving q-differentiation, Eur. J. Math. Anal., 2(12) (2022), 1–9. https://doi.org/10.28924/ada/ma.2.12
  • Lasode, A. O., Opoola, T. O., Coefficient problems of a class of q-starlike functions associated with q-analogue of Al-Oboudi-Al-Qahtani integral operator and nephroid domain, J. Class. Anal., 20(1) (2022), 35–47. https://doi.org/10.7153/jca-2022-20-04
  • Lasode, A. O., Opoola, T. O., Al-Shbeil, I., Shaba, T. G., Alsaud, H., Concerning a novel integral operator and a specific category of starlike functions, Mathematics 11(4519) (2023), 17 pages. https://doi.org/10.3390/math11214519
  • Opoola, T. O., On a subclass of univalent functions defined by a generalised differential operator, Internat. J. Math. Anal., 11(18) (2017), 869–876. https://doi.org/10.12988/ijma.2017.7232
  • Oyekan, E. A., Lasode, A. O., Estimates for some classes of analytic functions associated with Pascal distribution series, error function, Bell numbers and q-differential operator, Nigerian J. Math. Appl., 32 (2022), 163–173. http://www.njmaman.com/articles/2022/PAPER14.pdf
  • Oyekan, E. A., Olatunji, T. A., Lasode, A. O., Applications of (p, q)-Gegenbauer polynomials on a family of bi-univalent functions, Earthline J. Math. Sci., 12(2) (2023), 271–284. https://doi.org/10.34198/ejms.12223.271284
  • Oyekan, E. A., Swamy, S. R., Adepoju, P. O. , Olatunji, T. A., Quasi-convolution properties of a new family of close-to-convex functions involving q-p-Opoola differential operator, Intern. J. Math. Trends Technol., 69(5) (2023), 70-77. https://doi.org/10.14445/22315373/IJMTTV69I5P506
  • Polatoğlu, Y., Bolcal, S. M., Şen, A., Yavuz, E., A study on the generalization of Janowski functions in the unit disc, Acta Math. Acad. Paedagog. Nyh´azi., 22 (2006), 27–31.
  • Raza, M., Srivastava, H. M., Arif, M., Ahmad, K., Coefficient estimates for a certain family of analytic functions involving a q-derivative operator, Ramanujan J., 55 (2021), 53–71. https://doi.org/10.1007/s11139-020-00338-y
  • Rensaa, R. J., Univalent functions and frequency analysis, Rocky J. Math., 33(2) (2003), 743–758. https://doi.org/10.1216/rmjm/1181069976
  • Salagean, G. S., Subclasses of univalent functions, Lect. Notes Math., 1013 (1983), 362–372. https://doi.org/10.1007/BFb0066543
  • Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1) (1975), 109–116. https://doi.org/10.1090/S0002-9939-1975-0369678-0
  • Shaba, T. G., Wanas, A. K., Coefficient bounds for a certain families of m-fold symmetric bi-univalent functions associated with q-analogue of Wanas operator, Acta Univ. Apulensis Math. Inform., 68 (2021), 25–37. https://doi.org/10.17114/j.aua.2021.68.03
  • Srivastava, H. M., Operators of basic (or q-)calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., Review Paper, (2020), 18 pages. https://doi.org/10.1007/s40995-019-00815-0
  • Srivastava, H. M., Attiya, A. A., Some subordination results associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math., 5(4) (2004), 1–14. https://www.emis.de/journals/JIPAM/images/113 04 JIPAM/113 04.pdf
  • Srivastava, H. M., Khan, B., Khan, N., Hussain, A., Khan, N., Tahir, M., Applications of certian basic (or q-) derivatives to subclasses of multlivalemt Janowski type q-starlike functions involving conic domain, J. Nonlinear Var. Anal., 5(4) (2021), 531–547. https://doi.org/10.23952/jnva.5.2021.4.03
  • Thomas, D. K., Tuneski, N., Vasudevarao, A., Univalent Functions: A Primer, Walter de Gruyter Inc., Berlin, 2018. https://doi.org/10.1515/9783110560961-001
  • Ul-Haq, M., Raza, M., Arif, M., Khan, Q., Tang, H., q-Analogue of differential subordinations, Math. 7(8) (2019), pp. 16. https://doi.org/10.3390/math7080724
  • Vasilev, A., Univalent functions in the dynamics of viscous flow, Comput. Method Funct. Theory, 1(2) (2001), 311–337. https://doi.org/10.1007/BF03320993
  • Wanas, A. K., Mahdi, A. M., Applications of the q-Wanas operator for a certain family of bi-univalent functions defined by subordination, Asian-Eur. J. Math., 16(6) (2023), 1–16. https://doi.org/ 10.1142/S179355712350095X
  • Wilf, H. S., Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc., 12 (1961), 689–693. https://doi.org/10.1090/S0002-9939-1961-0125214-5
There are 43 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Ayotunde Lasode 0000-0002-2657-7698

Timothy Opoola 0000-0002-8692-1606

Publication Date June 21, 2024
Submission Date April 19, 2023
Acceptance Date December 17, 2023
Published in Issue Year 2024

Cite

APA Lasode, A., & Opoola, T. (2024). Some properties of a class of generalized Janowski-type $q$-starlike functions associated with Opoola $q$-differential operator and $q$-differential subordination. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(2), 349-364. https://doi.org/10.31801/cfsuasmas.1281348
AMA Lasode A, Opoola T. Some properties of a class of generalized Janowski-type $q$-starlike functions associated with Opoola $q$-differential operator and $q$-differential subordination. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2024;73(2):349-364. doi:10.31801/cfsuasmas.1281348
Chicago Lasode, Ayotunde, and Timothy Opoola. “Some Properties of a Class of Generalized Janowski-Type $q$-Starlike Functions Associated With Opoola $q$-Differential Operator and $q$-Differential Subordination”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 2 (June 2024): 349-64. https://doi.org/10.31801/cfsuasmas.1281348.
EndNote Lasode A, Opoola T (June 1, 2024) Some properties of a class of generalized Janowski-type $q$-starlike functions associated with Opoola $q$-differential operator and $q$-differential subordination. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 2 349–364.
IEEE A. Lasode and T. Opoola, “Some properties of a class of generalized Janowski-type $q$-starlike functions associated with Opoola $q$-differential operator and $q$-differential subordination”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 2, pp. 349–364, 2024, doi: 10.31801/cfsuasmas.1281348.
ISNAD Lasode, Ayotunde - Opoola, Timothy. “Some Properties of a Class of Generalized Janowski-Type $q$-Starlike Functions Associated With Opoola $q$-Differential Operator and $q$-Differential Subordination”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/2 (June 2024), 349-364. https://doi.org/10.31801/cfsuasmas.1281348.
JAMA Lasode A, Opoola T. Some properties of a class of generalized Janowski-type $q$-starlike functions associated with Opoola $q$-differential operator and $q$-differential subordination. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:349–364.
MLA Lasode, Ayotunde and Timothy Opoola. “Some Properties of a Class of Generalized Janowski-Type $q$-Starlike Functions Associated With Opoola $q$-Differential Operator and $q$-Differential Subordination”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 2, 2024, pp. 349-64, doi:10.31801/cfsuasmas.1281348.
Vancouver Lasode A, Opoola T. Some properties of a class of generalized Janowski-type $q$-starlike functions associated with Opoola $q$-differential operator and $q$-differential subordination. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(2):349-64.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.