Research Article
BibTex RIS Cite

Intuitionistic fine space

Year 2024, , 410 - 419, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1286719

Abstract

In the exploration of intuitionistic fine spaces, this article introduces a novel concept known as intuitionistic fine open sets (IfOS). Delving into the properties of these sets, the study analyzes both intuitionistic fine open and closed sets within the context of intuitionistic fine spaces. The article establishes fundamental definitions, accompanied by illustrative real time example, to provide a comprehensive understanding of the newly introduced sets. Furthermore, the exploration extends to defining and examining key concepts such as intuitionistic fine continuity, intuitionistic fine irresoluteness, and intuitionistic fine irresolute homeomorphism. This progression aims to contribute to the broader comprehension and application of intuitionistic fine spaces in topological contexts.

References

  • Bouchet, A., Montes, S., Diaz, I., Intuitionistic fuzzy sets applied to color image processing, CEUR Workshop Proceedings, 3074 (2021), 1-9.
  • Coker, D., A note on intutionistic sets and intuitionistic points, Turk. J. Math., 20(3) (1996), 343-351.
  • Coker, D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Syst., 88 (1997), 81-89. https://doi.org/10.1016/S0165-0114(96)00076-0
  • Erdal, C., Coker, D., On neighborhood structures in intuitionistic topological spaces, Math. Balk., 12 (1998), 283-293.
  • Girija, S., Gnanambal, I., Some more results on intuitionistic semi open sets, Int J Eng Res Appl., 4(11) (2014), 70-74.
  • Bredon, G. E., Topology and Geometry, Springer, New York, (1993). https://doi.org/10.1007/978-1-4757-6848-0
  • Gnanambal, I., Selvanayaki, S., IGPR-continuity and compactness in intuitionistic topological spaces, British Journal of Mathematicas and Computer Science, 11(2) (2015), 1-8. 10.9734/BJMCS/2015/19568
  • Valachos, I. K., Serigiadis, G. D., Intuitionistic fuzzy information-Applications to pattern recognition, Pattern Recognit. Lett., 28 (2007), 197–206. 10.1016/j.patrec.2006.07.004
  • Levine, N., Semi-open sets and semi-continuity in topological spaces, Am Math Mon., 70(1) (1963), 36-41. https://doi.org/10.2307/2312781
  • Li, Y., Li, T., Zhao, Q., Remote sensing image intuitionistic fuzzy set segmentation method, Acta Geodaetica et Cartographica Sinica, 52(3) (2023), 405-418. DOI:10.11947/j.AGCS.2023.20210419
  • Munkres, J. R.,Topology, Pearson, (2003).
  • Olgun, M., Unver, M., Yardimci, S., Pythagorean fuzzy points and applications in pattern recognition and Pythagorean fuzzy topologies, Methodologies and Application, 25 (2021), 5225-5232. DOI: 10.1007/s00500-020-05522-2
  • Olav, N., On some classes of nearly open sets, Pac J Math., 15(3) (1963), 961-970. DOI:10.2140/PJM.1965.15.961
  • Powar, P. L., Prathibha, D., A concise form of continuity in fine topological space, Adv. Comput. Sci. Technol., 10(6) (2017), 1785-1805.
  • Powar, P. L., Rajak, K., Fine irresolute mappings, J. Adv. Stud. Topol., 3(4) (2012), 125-139. DOI:10.20454/JAST.2012.428
  • Powar, P. L., Baravan A. A., Rajak, K., Kushwaha, R., Operations on fine topology, Eur. J. Appl. Math, 8 (1965), 338-353. DOI:10.29020/nybg.ejpam.v12i3.3449
  • Senthilkumar, P., Algorithms for solving the opyimization problems using fuzzy and intutionistic fuzzy set, Int. J. Syst. Assur., 11 (2020), 189-222. https://doi.org/10.1007/s13198-019-00941-3
  • Supriya, K. D., Ranjith, B., Akil, R. R., An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets and Syst., 117 (2001), 209-213. DOI:10.1016/S0165-0114(98)00235-8
  • Chaira, T., Intuitionistic fuzzy set approach for color region extraction, Journal of Scientific and Industrial Research , 69 (2010), 426-432.
  • Vidyarani, L., Vigneshwaran, M., On some intutionistic supra closed sets on intuitionistic supra topological spaces, Bulletin of Mathematics and Statistics Research, 3(3) (2015), 1-9.
  • Kovalevsky, V., Digital geometry based on the topology of abstract cell complexes, Proceedings of the Colloquium Discrete Geometry for Computer Imagery, (1993), 259-284.
  • Zadeh, L. A., Fuzzy sets, Inf. Control., 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
Year 2024, , 410 - 419, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1286719

Abstract

References

  • Bouchet, A., Montes, S., Diaz, I., Intuitionistic fuzzy sets applied to color image processing, CEUR Workshop Proceedings, 3074 (2021), 1-9.
  • Coker, D., A note on intutionistic sets and intuitionistic points, Turk. J. Math., 20(3) (1996), 343-351.
  • Coker, D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Syst., 88 (1997), 81-89. https://doi.org/10.1016/S0165-0114(96)00076-0
  • Erdal, C., Coker, D., On neighborhood structures in intuitionistic topological spaces, Math. Balk., 12 (1998), 283-293.
  • Girija, S., Gnanambal, I., Some more results on intuitionistic semi open sets, Int J Eng Res Appl., 4(11) (2014), 70-74.
  • Bredon, G. E., Topology and Geometry, Springer, New York, (1993). https://doi.org/10.1007/978-1-4757-6848-0
  • Gnanambal, I., Selvanayaki, S., IGPR-continuity and compactness in intuitionistic topological spaces, British Journal of Mathematicas and Computer Science, 11(2) (2015), 1-8. 10.9734/BJMCS/2015/19568
  • Valachos, I. K., Serigiadis, G. D., Intuitionistic fuzzy information-Applications to pattern recognition, Pattern Recognit. Lett., 28 (2007), 197–206. 10.1016/j.patrec.2006.07.004
  • Levine, N., Semi-open sets and semi-continuity in topological spaces, Am Math Mon., 70(1) (1963), 36-41. https://doi.org/10.2307/2312781
  • Li, Y., Li, T., Zhao, Q., Remote sensing image intuitionistic fuzzy set segmentation method, Acta Geodaetica et Cartographica Sinica, 52(3) (2023), 405-418. DOI:10.11947/j.AGCS.2023.20210419
  • Munkres, J. R.,Topology, Pearson, (2003).
  • Olgun, M., Unver, M., Yardimci, S., Pythagorean fuzzy points and applications in pattern recognition and Pythagorean fuzzy topologies, Methodologies and Application, 25 (2021), 5225-5232. DOI: 10.1007/s00500-020-05522-2
  • Olav, N., On some classes of nearly open sets, Pac J Math., 15(3) (1963), 961-970. DOI:10.2140/PJM.1965.15.961
  • Powar, P. L., Prathibha, D., A concise form of continuity in fine topological space, Adv. Comput. Sci. Technol., 10(6) (2017), 1785-1805.
  • Powar, P. L., Rajak, K., Fine irresolute mappings, J. Adv. Stud. Topol., 3(4) (2012), 125-139. DOI:10.20454/JAST.2012.428
  • Powar, P. L., Baravan A. A., Rajak, K., Kushwaha, R., Operations on fine topology, Eur. J. Appl. Math, 8 (1965), 338-353. DOI:10.29020/nybg.ejpam.v12i3.3449
  • Senthilkumar, P., Algorithms for solving the opyimization problems using fuzzy and intutionistic fuzzy set, Int. J. Syst. Assur., 11 (2020), 189-222. https://doi.org/10.1007/s13198-019-00941-3
  • Supriya, K. D., Ranjith, B., Akil, R. R., An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets and Syst., 117 (2001), 209-213. DOI:10.1016/S0165-0114(98)00235-8
  • Chaira, T., Intuitionistic fuzzy set approach for color region extraction, Journal of Scientific and Industrial Research , 69 (2010), 426-432.
  • Vidyarani, L., Vigneshwaran, M., On some intutionistic supra closed sets on intuitionistic supra topological spaces, Bulletin of Mathematics and Statistics Research, 3(3) (2015), 1-9.
  • Kovalevsky, V., Digital geometry based on the topology of abstract cell complexes, Proceedings of the Colloquium Discrete Geometry for Computer Imagery, (1993), 259-284.
  • Zadeh, L. A., Fuzzy sets, Inf. Control., 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Ayyakanupillai Gnanaudhayam Rose Venish 0000-0002-3710-997X

Lakshmanadas Vidyarani 0000-0002-2244-7140

Vigneshwaran M This is me 0000-0003-1845-6877

Publication Date June 21, 2024
Submission Date April 25, 2023
Acceptance Date February 13, 2024
Published in Issue Year 2024

Cite

APA Rose Venish, A. G., Vidyarani, L., & M, V. (2024). Intuitionistic fine space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(2), 410-419. https://doi.org/10.31801/cfsuasmas.1286719
AMA Rose Venish AG, Vidyarani L, M V. Intuitionistic fine space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2024;73(2):410-419. doi:10.31801/cfsuasmas.1286719
Chicago Rose Venish, Ayyakanupillai Gnanaudhayam, Lakshmanadas Vidyarani, and Vigneshwaran M. “Intuitionistic Fine Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 2 (June 2024): 410-19. https://doi.org/10.31801/cfsuasmas.1286719.
EndNote Rose Venish AG, Vidyarani L, M V (June 1, 2024) Intuitionistic fine space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 2 410–419.
IEEE A. G. Rose Venish, L. Vidyarani, and V. M, “Intuitionistic fine space”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 2, pp. 410–419, 2024, doi: 10.31801/cfsuasmas.1286719.
ISNAD Rose Venish, Ayyakanupillai Gnanaudhayam et al. “Intuitionistic Fine Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/2 (June 2024), 410-419. https://doi.org/10.31801/cfsuasmas.1286719.
JAMA Rose Venish AG, Vidyarani L, M V. Intuitionistic fine space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:410–419.
MLA Rose Venish, Ayyakanupillai Gnanaudhayam et al. “Intuitionistic Fine Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 2, 2024, pp. 410-9, doi:10.31801/cfsuasmas.1286719.
Vancouver Rose Venish AG, Vidyarani L, M V. Intuitionistic fine space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(2):410-9.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.