Bounds for the maximum eigenvalues of the Fibonacci-Frank and Lucas-Frank matrices
Year 2024,
, 420 - 436, 21.06.2024
Efruz Özlem Mersin
,
Mustafa Bahşi
Abstract
Frank matrix is one of the popular test matrices for eigenvalue routines because it has well-conditioned and poorly conditioned eigenvalues. In this paper, we investigate the bounds for the maximum eigenvalues of the special cases of the generalized Frank matrices which are called Fibonacci-Frank and Lucas-Frank matrices. Then, we obtain the Euclidean norms and the upper bounds for the spectral norms of these matrices.
References
- Bahsi, M., On the norms of circulant matrices with the generalized Fibonacci and Lucas numbers, TWMS Journal of Pure and Applied Mathematics, 6(1) (2015), 84-92.
- Dupree, E., Mathes, B., Singular values of k-Fibonacci and k-Lucas Hankel matrices, International Journal of Contemporary Mathematical Sciences, 47(7) (2012), 2327-2339.
- Frank, W. L., Computing eigenvalues of complex matrices by determinant evaluation and by methods of Danilewski and Wielandt, Journal of the Society for Industrial and Applied Mathematics, 6(4) (1958), 378-392. https://doi.org/10.1137/0106026
- Greenberg, L., Sturm sequences for nonlinear eigenvalue problems, SIAM Journal on Mathematical Analysis, 20 (1) (1989), 182-199. https://doi.org/10.1137/0520015
- Hake, J. F., A remark on Frank matrices, Computing, 35(3) (1985), 375-379.
- Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press, 1985.
- Jafari-Petroudi, S. H., Pirouz, M., On the bounds for the spectral norm of particular matrices with Fibonacci and Lucas numbers, International Journal of Advances in Applied Mathematics and Mechanics, 3(4) (2016), 82–90.
- Koshy, T., Fibonacci and Lucas Numbers With Applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Tracts, New York, Wiley, 2001.
- Mersin, E. Ö., Sturm’s Theorem for Min matrices, AIMS Mathematics, 8(7) (2023), 17229-17245. https://doi.org/10.3934/math.2023880
- Mersin, E. Ö., Properties of generalized Frank matrices, PhD. Thesis, Aksaray University Graduate School of Natural and Applied Sciences, Department of Mathematics, 2021.
- Mersin, E. Ö., Bahşi, M., Sturm theorem for the generalized Frank matrix, Hacettepe Journal of Mathematics and Statistics, 50(4) (2021), 1002–1011. https://doi.org/10.15672/hujms.773281
- Mersin, E. Ö., Bahşi, M., Maden, A. D., Some properties of generalized Frank matrices, Mathematical Sciences and Applications E-Notes, 8(2) (2020), 170-177. https://doi.org/10.36753/mathenot.672621
- Milovanovic, I. Z., Milovanovic, E. I., Matejic, M., Some inequalities for general sum connectivity index, MATCH Communications in Mathematical in Computer Chemistry, 79 (2018), 477-489.
- Mitrinovic, D. S., Vasic, P. M., Analytic Inequalities, Springer, Berlin, 1970.
- Nalli, A., Şen, M., On the norms of circulant matrices with generalized Fibonacci numbers, Selcuk Journal of Applied Mathematics, 11(1) (2010), 107-116. https://doi.org/10.13069/jacodesmath.12813
- Ortega, J. M., On Sturm sequences for tridiagonal matrices, Journal of the ACM (JACM), 7(3) (1960), 260-263.
- Shen, S., Cen, J., On the bounds for the norms of r-circulant matrices with the Fibonacci and Lucas numbers, Applied Mathematics and Computation, 216(10) (2010), 2891-2897. https://doi.org/10.1016/j.amc.2010.03.140
- Solak, S., On the norms of circulant matrices with the Fibonacci and Lucas numbers, Applied Mathematics and Computation, 160(1) (2005), 125-132. https://doi.org/10.1016/j.amc.2003.08.126
- Solak, S., Erratum to “On the norms of circulant matrices with the Fibonacci and Lucas numbers" [Appl. Math. Comput. 160 (2005), 125–132], Applied Mathematics and Computation, 2(190) (2007), 1855-1856.
- Solak, S., Bahşi, M., On the spectral norms of Toeplitz matrices with Fibonacci and Lucas numbers, Hacettepe Journal of Mathematics and Statistics, 42(1) (2013), 15-19.
- Stoer, J., Bulirsch, R., Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.
- Vajda, S., Fibonacci and Lucas Numbers, and the Golden Section, John Wiley and Sons, New York, 1989.
- Varah, J. M., A generalization of the Frank matrix, SIAM Journal on Scientific and Statistical Computing, 7(3) (1986) 835-839. https://doi.org/10.1137/0907056
- Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University Press, 1965.
Year 2024,
, 420 - 436, 21.06.2024
Efruz Özlem Mersin
,
Mustafa Bahşi
References
- Bahsi, M., On the norms of circulant matrices with the generalized Fibonacci and Lucas numbers, TWMS Journal of Pure and Applied Mathematics, 6(1) (2015), 84-92.
- Dupree, E., Mathes, B., Singular values of k-Fibonacci and k-Lucas Hankel matrices, International Journal of Contemporary Mathematical Sciences, 47(7) (2012), 2327-2339.
- Frank, W. L., Computing eigenvalues of complex matrices by determinant evaluation and by methods of Danilewski and Wielandt, Journal of the Society for Industrial and Applied Mathematics, 6(4) (1958), 378-392. https://doi.org/10.1137/0106026
- Greenberg, L., Sturm sequences for nonlinear eigenvalue problems, SIAM Journal on Mathematical Analysis, 20 (1) (1989), 182-199. https://doi.org/10.1137/0520015
- Hake, J. F., A remark on Frank matrices, Computing, 35(3) (1985), 375-379.
- Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press, 1985.
- Jafari-Petroudi, S. H., Pirouz, M., On the bounds for the spectral norm of particular matrices with Fibonacci and Lucas numbers, International Journal of Advances in Applied Mathematics and Mechanics, 3(4) (2016), 82–90.
- Koshy, T., Fibonacci and Lucas Numbers With Applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Tracts, New York, Wiley, 2001.
- Mersin, E. Ö., Sturm’s Theorem for Min matrices, AIMS Mathematics, 8(7) (2023), 17229-17245. https://doi.org/10.3934/math.2023880
- Mersin, E. Ö., Properties of generalized Frank matrices, PhD. Thesis, Aksaray University Graduate School of Natural and Applied Sciences, Department of Mathematics, 2021.
- Mersin, E. Ö., Bahşi, M., Sturm theorem for the generalized Frank matrix, Hacettepe Journal of Mathematics and Statistics, 50(4) (2021), 1002–1011. https://doi.org/10.15672/hujms.773281
- Mersin, E. Ö., Bahşi, M., Maden, A. D., Some properties of generalized Frank matrices, Mathematical Sciences and Applications E-Notes, 8(2) (2020), 170-177. https://doi.org/10.36753/mathenot.672621
- Milovanovic, I. Z., Milovanovic, E. I., Matejic, M., Some inequalities for general sum connectivity index, MATCH Communications in Mathematical in Computer Chemistry, 79 (2018), 477-489.
- Mitrinovic, D. S., Vasic, P. M., Analytic Inequalities, Springer, Berlin, 1970.
- Nalli, A., Şen, M., On the norms of circulant matrices with generalized Fibonacci numbers, Selcuk Journal of Applied Mathematics, 11(1) (2010), 107-116. https://doi.org/10.13069/jacodesmath.12813
- Ortega, J. M., On Sturm sequences for tridiagonal matrices, Journal of the ACM (JACM), 7(3) (1960), 260-263.
- Shen, S., Cen, J., On the bounds for the norms of r-circulant matrices with the Fibonacci and Lucas numbers, Applied Mathematics and Computation, 216(10) (2010), 2891-2897. https://doi.org/10.1016/j.amc.2010.03.140
- Solak, S., On the norms of circulant matrices with the Fibonacci and Lucas numbers, Applied Mathematics and Computation, 160(1) (2005), 125-132. https://doi.org/10.1016/j.amc.2003.08.126
- Solak, S., Erratum to “On the norms of circulant matrices with the Fibonacci and Lucas numbers" [Appl. Math. Comput. 160 (2005), 125–132], Applied Mathematics and Computation, 2(190) (2007), 1855-1856.
- Solak, S., Bahşi, M., On the spectral norms of Toeplitz matrices with Fibonacci and Lucas numbers, Hacettepe Journal of Mathematics and Statistics, 42(1) (2013), 15-19.
- Stoer, J., Bulirsch, R., Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.
- Vajda, S., Fibonacci and Lucas Numbers, and the Golden Section, John Wiley and Sons, New York, 1989.
- Varah, J. M., A generalization of the Frank matrix, SIAM Journal on Scientific and Statistical Computing, 7(3) (1986) 835-839. https://doi.org/10.1137/0907056
- Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University Press, 1965.