Lyapunov-type inequalities for linear hyperbolic and elliptic equations on a rectangular domain
Year 2024,
, 529 - 537, 21.06.2024
Bülent Köroğlu
,
Abdullah Özbekler
Abstract
In the case of oscillatory potential, we present some new Lyapunov-type inequalities for linear hyperbolic and elliptic equations on a rectangular domain in ${\mathbb R}^2$. No sign restriction is imposed on the potential function. As applications of the Lyapunov-type inequalities obtained, we give some estimations for disconjugacy of hyperbolic and elliptic Dirichlet boundary value problems.
References
- Agarwal, R. P., Bohner, M., Özbekler, A., Lyapunov Inequalities and Applications, Springer, Switzerland, 2021. https://doi.org/10.1007/978-3-030-69029-8
- Canada, A., Montero, J. A., Villegas, S., Lyapunov inequalities for partial differential equations, J. Funct. Anal., 237(1) (2006), 176-193. https://doi.org/10.1016/j.jfa.2005.12.011
- Canada, A., Villegas, S., Lyapunov inequalities for Neumann boundary conditions at higher eigenvalues, J Eur Math Soc., 12 (2010), 163-178. https://ems.press/doi/10.4171/jems/193
- Canada, A. , Villegas, S., Lyapunov inequalities for Partial differential equations at radial higher eigenvalues, Discrete Contin. Dyn. Syst., 33(1) (2013), 111-122. 10.3934/dcds.2013.33.111
- Cheng, S. S., Lyapunov inequalities for differential and difference equations, Fasc. Math., 23 (1991), 25-41.
- de Napoli P. L., Pinasco, J. P., Lyapunov inequality for monotone quasilinear operators, Differ Integ. Equ., 18(10) (2005), 1193-1200.
- de Napoli P. L., Pinasco, J. P., Lyapunov-type inequalities for partial differential equations, J. Funct. Anal., 270(6) (2016), 1995-2018. https://doi.org/10.1016/j.jfa.2016.01.006
- Hartman, P., Ordinary Differential Equations, Wiley, New York, 1964 and Birkhauser, Boston, 1982.
- Jleli, M., Kirane, M., Samet, B., Lyapunov-type inequalities for fractional partial differential equations, Appl. Math. Lett., 66 (2017), 30-99. https://doi.org/10.1016/j.aml.2016.10.013
- Jleli, M., Kirane, M., Samet, B., On Lyapunov-type inequalities for a certain class of partial differential equations, Appl. Anal., 99(1) (2020), 40-59. https://doi.org/10.1080/00036811.2018.1484909
- Kumar, D., Tyagi, J., Lyapunov-type inequalities for singular elliptic partial differential equations, Math. Methods Appl. Sci., 44(7) (2021), 5593-5616. https://doi.org/10.1002/mma.7134
- Lee, C., Yeh, C., Hong, C., Agarwal, R. P., Lyapunov and Wirtinger inequalities, Appl. Math. Lett., 17 (2004), 847-853. https://doi.org/10.1016/j.aml.2004.06.016
- Liapunov, A. M., Probleme general de la stabilite du mouvement, (French Translation of a Russian paper dated 1893), Ann. Fac. Sci. Univ. Toulouse, 2 (1907), 27–247, Reprinted as Ann. Math. Studies, No. 17, Princeton, 1947. https://doi.org/10.1515/9781400882311
- Sanchez, J., Vergara, V., A Lyapunov-type inequality for a Ψ-Laplacian operator, Nonlinear Anal., 74 (2011), 7071-7077. https://doi.org/10.1016/j.na.2011.07.027
- Steglinski, R., Lyapunov-type inequalities for partial differential equations with p-Laplacian, Forum Math., 33(2) (2021), 465-476. https://doi.org/10.1515/forum-2020-0232
- Tiryaki, A., Recent developments of Lyapunov-type inequalities, Advances in Dynam. Sys. Appl., 5(2) (2010), 231-248.
- Wintner, A., On the nonexistence of conjugate points, Amer. J. Math., 73 (1951), 368-380. https://doi.org/10.2307/2372182
Year 2024,
, 529 - 537, 21.06.2024
Bülent Köroğlu
,
Abdullah Özbekler
References
- Agarwal, R. P., Bohner, M., Özbekler, A., Lyapunov Inequalities and Applications, Springer, Switzerland, 2021. https://doi.org/10.1007/978-3-030-69029-8
- Canada, A., Montero, J. A., Villegas, S., Lyapunov inequalities for partial differential equations, J. Funct. Anal., 237(1) (2006), 176-193. https://doi.org/10.1016/j.jfa.2005.12.011
- Canada, A., Villegas, S., Lyapunov inequalities for Neumann boundary conditions at higher eigenvalues, J Eur Math Soc., 12 (2010), 163-178. https://ems.press/doi/10.4171/jems/193
- Canada, A. , Villegas, S., Lyapunov inequalities for Partial differential equations at radial higher eigenvalues, Discrete Contin. Dyn. Syst., 33(1) (2013), 111-122. 10.3934/dcds.2013.33.111
- Cheng, S. S., Lyapunov inequalities for differential and difference equations, Fasc. Math., 23 (1991), 25-41.
- de Napoli P. L., Pinasco, J. P., Lyapunov inequality for monotone quasilinear operators, Differ Integ. Equ., 18(10) (2005), 1193-1200.
- de Napoli P. L., Pinasco, J. P., Lyapunov-type inequalities for partial differential equations, J. Funct. Anal., 270(6) (2016), 1995-2018. https://doi.org/10.1016/j.jfa.2016.01.006
- Hartman, P., Ordinary Differential Equations, Wiley, New York, 1964 and Birkhauser, Boston, 1982.
- Jleli, M., Kirane, M., Samet, B., Lyapunov-type inequalities for fractional partial differential equations, Appl. Math. Lett., 66 (2017), 30-99. https://doi.org/10.1016/j.aml.2016.10.013
- Jleli, M., Kirane, M., Samet, B., On Lyapunov-type inequalities for a certain class of partial differential equations, Appl. Anal., 99(1) (2020), 40-59. https://doi.org/10.1080/00036811.2018.1484909
- Kumar, D., Tyagi, J., Lyapunov-type inequalities for singular elliptic partial differential equations, Math. Methods Appl. Sci., 44(7) (2021), 5593-5616. https://doi.org/10.1002/mma.7134
- Lee, C., Yeh, C., Hong, C., Agarwal, R. P., Lyapunov and Wirtinger inequalities, Appl. Math. Lett., 17 (2004), 847-853. https://doi.org/10.1016/j.aml.2004.06.016
- Liapunov, A. M., Probleme general de la stabilite du mouvement, (French Translation of a Russian paper dated 1893), Ann. Fac. Sci. Univ. Toulouse, 2 (1907), 27–247, Reprinted as Ann. Math. Studies, No. 17, Princeton, 1947. https://doi.org/10.1515/9781400882311
- Sanchez, J., Vergara, V., A Lyapunov-type inequality for a Ψ-Laplacian operator, Nonlinear Anal., 74 (2011), 7071-7077. https://doi.org/10.1016/j.na.2011.07.027
- Steglinski, R., Lyapunov-type inequalities for partial differential equations with p-Laplacian, Forum Math., 33(2) (2021), 465-476. https://doi.org/10.1515/forum-2020-0232
- Tiryaki, A., Recent developments of Lyapunov-type inequalities, Advances in Dynam. Sys. Appl., 5(2) (2010), 231-248.
- Wintner, A., On the nonexistence of conjugate points, Amer. J. Math., 73 (1951), 368-380. https://doi.org/10.2307/2372182