Research Article
BibTex RIS Cite

On the Jacobsthal numbers which are the product of two Modified Pell numbers

Year 2024, , 604 - 610, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1315051

Abstract

This paper presents an analytic study of determining all the possible solutions of the Diophantine equations such that $ {q_k} = {J_m} {J_n} $ and $ {J_k} = {q_m} {q_n} $. These give intersections of the Modified Pell and Jacobsthal numbers too for the case where $ m = 1 $ or $ n = 1 $.

References

  • Vajda, S., Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Courier Corporation, New York, 2008.
  • Koshy, T., Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
  • Horadam, A. F., Applications of modified Pell numbers to representations, Ulam Quarterly, 3(1) (1994), 34–53.
  • Horadam, A. F., Jacobsthal representation numbers, Fibonacci Quart., 34(1) (1996), 40–54.
  • Daşdemir, A., On the Pell, Pell-Lucas and Modified Pell numbers by matrix method, Applied Mathematical Sciences, 5(64) (2011), 3173–3181.
  • Daşdemir, A., On the Jacobsthal numbers by matrix method, SDU Journal of Science Journal of Science, 7(1) (2012), 69–76.
  • Daşdemir, A., A study on the Jacobsthal and Jacobsthal-Lucas numbers by matrix method, DUFED Journal of Sciences, 3(1) (2014), 13–18.
  • Arslan, S., Köken, F., The Jacobsthal and Jacobsthal-Lucas numbers via square roots of matrices, Int. Math. Forum., 11(11) (2016), 513–520. http://doi.org/10.12988/imf.2016.6442
  • Catarino, P., Campos, H., A note on Gaussian Modified Pell numbers, Journal of Information and Optimization Sciences, 39(6) (2018), 1363–1371. http://doi.org/10.1080/02522667.2018.1471267
  • Radicic, B., On k-circulant matrices involving the Pell numbers, Results in Mathematics, 74(4) (2019), 200. https://doi.org/10.1007/s00025-019-1121-9
  • Daşdemir, A., Mersene, Jacobsthal, and Jacobsthal-Lucas numbers with negative subscripts, Acta Math. Univ. Comenian., 88(1) (2019), 142–156.
  • Soykan, Y., Göcen, M., Properties of hyperbolic generalized Pell numbers, Notes on Number Theory and Discrete Mathematics, 26(4) (2020), 136–153. http://doi.org/10.7546/nntdm.2020.26.4.136-153
  • Uygun, S¸., The relations between bi-periodic Jacobsthal and bi-periodic Jacobsthal Lucas sequence, Cumhuriyet Science Journal, 42(2) (2021), 346–357. http://doi.org/10.17776/csj.770080
  • Matveev, E. M., An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II, II. Izv. Math., 64(6) (2000), 1217–1269. http://doi.org/10.1070/IM2000v064n06ABEH000314
  • Baker, A., Davenport, H., The equations $3x^2 − 2 = y^2$ and $8x^2 − 7 = z^2$, Quart. J. Math. Oxford Ser., 20(1) (1969), 129–137.
  • Dujella, A., Pethö, A., A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser., 49(195) (1998), 291–306. https://doi.org/10.1093/qjmath/49.195.291
Year 2024, , 604 - 610, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1315051

Abstract

References

  • Vajda, S., Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Courier Corporation, New York, 2008.
  • Koshy, T., Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
  • Horadam, A. F., Applications of modified Pell numbers to representations, Ulam Quarterly, 3(1) (1994), 34–53.
  • Horadam, A. F., Jacobsthal representation numbers, Fibonacci Quart., 34(1) (1996), 40–54.
  • Daşdemir, A., On the Pell, Pell-Lucas and Modified Pell numbers by matrix method, Applied Mathematical Sciences, 5(64) (2011), 3173–3181.
  • Daşdemir, A., On the Jacobsthal numbers by matrix method, SDU Journal of Science Journal of Science, 7(1) (2012), 69–76.
  • Daşdemir, A., A study on the Jacobsthal and Jacobsthal-Lucas numbers by matrix method, DUFED Journal of Sciences, 3(1) (2014), 13–18.
  • Arslan, S., Köken, F., The Jacobsthal and Jacobsthal-Lucas numbers via square roots of matrices, Int. Math. Forum., 11(11) (2016), 513–520. http://doi.org/10.12988/imf.2016.6442
  • Catarino, P., Campos, H., A note on Gaussian Modified Pell numbers, Journal of Information and Optimization Sciences, 39(6) (2018), 1363–1371. http://doi.org/10.1080/02522667.2018.1471267
  • Radicic, B., On k-circulant matrices involving the Pell numbers, Results in Mathematics, 74(4) (2019), 200. https://doi.org/10.1007/s00025-019-1121-9
  • Daşdemir, A., Mersene, Jacobsthal, and Jacobsthal-Lucas numbers with negative subscripts, Acta Math. Univ. Comenian., 88(1) (2019), 142–156.
  • Soykan, Y., Göcen, M., Properties of hyperbolic generalized Pell numbers, Notes on Number Theory and Discrete Mathematics, 26(4) (2020), 136–153. http://doi.org/10.7546/nntdm.2020.26.4.136-153
  • Uygun, S¸., The relations between bi-periodic Jacobsthal and bi-periodic Jacobsthal Lucas sequence, Cumhuriyet Science Journal, 42(2) (2021), 346–357. http://doi.org/10.17776/csj.770080
  • Matveev, E. M., An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II, II. Izv. Math., 64(6) (2000), 1217–1269. http://doi.org/10.1070/IM2000v064n06ABEH000314
  • Baker, A., Davenport, H., The equations $3x^2 − 2 = y^2$ and $8x^2 − 7 = z^2$, Quart. J. Math. Oxford Ser., 20(1) (1969), 129–137.
  • Dujella, A., Pethö, A., A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser., 49(195) (1998), 291–306. https://doi.org/10.1093/qjmath/49.195.291
There are 16 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Articles
Authors

Ahmet Daşdemir 0000-0001-8352-2020

Mehmet Varol 0009-0008-8462-5185

Publication Date September 27, 2024
Submission Date June 15, 2023
Acceptance Date April 13, 2024
Published in Issue Year 2024

Cite

APA Daşdemir, A., & Varol, M. (2024). On the Jacobsthal numbers which are the product of two Modified Pell numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(3), 604-610. https://doi.org/10.31801/cfsuasmas.1315051
AMA Daşdemir A, Varol M. On the Jacobsthal numbers which are the product of two Modified Pell numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2024;73(3):604-610. doi:10.31801/cfsuasmas.1315051
Chicago Daşdemir, Ahmet, and Mehmet Varol. “On the Jacobsthal Numbers Which Are the Product of Two Modified Pell Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 3 (September 2024): 604-10. https://doi.org/10.31801/cfsuasmas.1315051.
EndNote Daşdemir A, Varol M (September 1, 2024) On the Jacobsthal numbers which are the product of two Modified Pell numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 3 604–610.
IEEE A. Daşdemir and M. Varol, “On the Jacobsthal numbers which are the product of two Modified Pell numbers”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 3, pp. 604–610, 2024, doi: 10.31801/cfsuasmas.1315051.
ISNAD Daşdemir, Ahmet - Varol, Mehmet. “On the Jacobsthal Numbers Which Are the Product of Two Modified Pell Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/3 (September 2024), 604-610. https://doi.org/10.31801/cfsuasmas.1315051.
JAMA Daşdemir A, Varol M. On the Jacobsthal numbers which are the product of two Modified Pell numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:604–610.
MLA Daşdemir, Ahmet and Mehmet Varol. “On the Jacobsthal Numbers Which Are the Product of Two Modified Pell Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 3, 2024, pp. 604-10, doi:10.31801/cfsuasmas.1315051.
Vancouver Daşdemir A, Varol M. On the Jacobsthal numbers which are the product of two Modified Pell numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(3):604-10.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.