Research Article
BibTex RIS Cite

A second-order numerical method for pseudo-parabolic equations having both layer behavior and delay parameter

Year 2024, , 569 - 587, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1327826

Abstract

In this paper, singularly perturbed pseudo-parabolic initial-boundary value problems with time-delay parameter are considered by numerically. Initially, the asymptotic properties of the analytical solution are investigated. Then, a discretization with exponential coefficient is suggested on a uniform mesh. The error approximations and uniform convergence of the presented method are estimated in the discrete energy norm. Finally, some numerical experiments are given to clarify the theory.

References

  • Amirali, I., Amiraliyev, G. M., Cakir, M., Cimen, E., Explicit finite difference methods for the delay pseudo-parabolic equations, The Scientific World Journal, 2014 (2014). https://doi.org/10.1155/2014/497393
  • Amirali, I., Analysis of higher order difference method for a pseudo-parabolic equation with delay, Miskolc Math. Notes, 20(2) (2019), 755-766. DOI: 10.18514/MMN.2019.2895
  • Amirali, I., Amiraliyev, G. M., Three layer difference method for linear pseudo-parabolic equation with delay, J. Comput. Appl. Math., 401 (2022), 113786. https://doi.org/10.1016/j.cam.2021.113786
  • Amiraliyev, G. M., Mamedov, Y. D., Difference schemes on the uniform mesh for singularly perturbed pseudo-parabolic equations, Turk. J. Math., 19(3) (1995), 207-222.
  • Amiraliyev, G. M., Erdogan, F., Uniform numerical method for singularly perturbed delay differential equations, Comput. Math. Appl., 53(8) (2007), 1251-1259. https://doi.org/10.1016/j.camwa.2006.07.009
  • Amiraliyev, G. M., Duru, H., Amiraliyeva, I. G., A parameter-uniform numerical method for a Sobolev problem with initial layer, Numer. Algorithms, 44 (2007), 185-203. https://doi.org/10.1007/s11075-007-9096-0
  • Amiraliyev, G. M., Cimen, E., Numerical method for a singularly perturbed convection-diffusion problem with delay, Appl. Math. Comput., 216(8) (2010), 2351-2359. https://doi.org/10.1016/j.amc.2010.03.080
  • Amiraliyev, G. M., Cimen, E., Amirali, I., Cakir, M., High-order finite difference technique for delay pseudo-parabolic equations, J. Comput. Appl. Math., 321 (2017), 1-7. https://doi.org/10.1016/j.cam.2017.02.017
  • Amiraliyeva, I. G., Erdogan, F., Amiraliyev, G. M., A uniform numerical method for dealing with a singularly perturbed delay initial value problem, Appl. Math. Lett., 23(10) (2010), 1221-1225. https://doi.org/10.1016/j.aml.2010.06.002
  • Ansari, A. R., Bakr, S. A., Shishkin, G. I., A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations, J. Comput. Appl. Math., 205(1) (2007), 552-566. https://doi.org/10.1016/j.cam.2006.05.032
  • Arslan, D., A novel hybrid method for singularly perturbed delay differential equations, Gazi Univ. J. Sci., 32(1) (2019), 217-223.
  • Bansal, K., Sharma, K. K., Parameter-robust numerical scheme for time-dependent singularly perturbed reaction-diffusion problem with large delay, Numer. Funct. Anal. Optim., 39(2) (2018), 127-154. https://doi.org/10.1080/01630563.2016.1277742
  • Bawa, L. K., Lal, A. K., Kumar, V., An $\epsilon$-uniform hybrid scheme for singularly perturbed delay differential equations, Appl. Math. Comput., 217(21) (2011), 8216-8222. https://doi.org/10.1016/j.amc.2011.02.089
  • Cen, Z., A hybrid finite difference scheme for a class of singularly perturbed delay differential equations, Neural Parallel Sci. Comput., 16(3) (2008), 303-308.
  • Chakravarthy, P.P., Kumar, K., A novel method for singularly perturbed delay differential equations of reaction-diffusion type, Differ. Equ. Dyn. Syst., 29 (2021), 723-734. https://doi.org/10.1007/s12591-017-0399-x
  • Chen, S-B., Soradi-Zeid, S., Dutta, H., Mesrizadeh M., Johanshahi H., Chu Y-M., Reproducing kernel Hilbert space method for nonlinear second order singularly perturbed boundary value problems with time-delay, Chaos Solit., 144 (2021), 110674. https://doi.org/10.1016/j.chaos.2021.110674
  • Chiyaneh, A. B., Duru, H., Uniform difference method for singularly pertubated delay Sobolev problems, Quaest. Math., 43(12) (2020), 1713-1736. https://doi.org/10.2989/16073606.2019.1653395
  • Chiyaneh, A. B., Duru, H., A numerical scheme on S-mesh for the singularly perturbed initial boundary value Sobolev problems with large time delay, Journal of Mathematics, Mechanics and Computer Science, 117(1) (2023), 93-111. https://doi.org/10.26577/JMMCS.2023.v117.i1.08
  • Doolan, E. P., Miller, J. J. H., Schilders, W.H.A., Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 1980.
  • Ducrot, A., Magal, P., Seydi, O., A singularly perturbed delay differential equation modeling nosomial infections, Differ. Integral Equ., 29(3-4) (2016), 321-358. DOI:10.57262/die/1455806027
  • Duru, H., Gunes, B., The stability and convergence analysis for singularly perturbed Sobolev problems with Robin type boundary condition, Georgian Math. J., 30(3) (2023), 349-363. https://doi.org/10.1515/gmj-2023-2004
  • Erdogan, F., An exponentially fitted method for singularly perturbed delay differential equations, Adv. Differ. Equ., 2009 (2009), 1-9. doi:10.1155/2009/781579
  • Elango, S., Tamilselvan, A., Vadivel, R., Gunasekaran, N., Zhu, H., Cao, J., Li, X., Finite difference scheme for singularly perturbed reaction diffusion problem of partial delay differential equation with nonlocal boundary condition, Adv. Differ. Equ., 2021 (2021), 1-20. https://doi.org/10.1186/s13662-021-03296-x
  • Farrell, P., Hegarty, A. F., Miller, J. J. H., O’Riordan, E., Shishkin, G. I., Robust Computational Techniques for Boundary Layers, Chapman and Hall/CRC, 2000.
  • Feng, T., Ni, M., Internal layers for a quasi-linear singularly perturbed delay differential equation, J. Appl. Anal. Comput., 10(4) (2020), 1666-1682. DOI:10.11948/20190337
  • Gelu, F. W., Duressa, G. F., A uniformly convergent collocation method for singularly perturbed delay parabolic reaction-diffusion problem, Abstr. Appl. Anal., 2021, (2021), 1-11. https://doi.org/10.1155/2021/8835595
  • Gemechis, F., Gashu, G., Tesfaye, A., Reddy, Y. N., Numerical solution of singularly perturbed delay reaction-diffusion equations with layer or oscillatory behavior, Am. J. Numer. Anal., 5(1) (2017), 1-10. DOI:10.12691/ajna-5-1-1
  • Geng, F. Z., Qian, S. P., Piecewise reproducing kernel methods for singularly perturbed delay initial value problems, Appl. Math. Lett., 37 (2014), 67-71. https://doi.org/10.1016/j.aml.2014.05.014
  • Geng, F. Z., Qian, S. P., Modified reproducing kernel method for singularly perturbed boundary value problems with a delay, Appl. Math. Model., 39(18) (2015), 5592-5597. https://doi.org/10.1016/j.apm.2015.01.021
  • Govindarao, L., Mohapatra, J., A second order numerical method for singularly perturbed delay parabolic partial differential equation, Eng. Comput., 36(2) (2019), 420-444. https://doi.org/10.1108/EC-08-2018-0337
  • Govindarao, L., Mohapatra, J., Das, A., A fourth-order numerical scheme for singularly perturbed delay parabolic problem arising in population dynamics, J. Appl. Math. Comput., 63(1) (2020), 171-195. https://doi.org/10.1007/s12190-019-01313-7.
  • Gunes, B., Duru, H., A computational method for the singularly perturbed delay pseudo-parabolic differential equations on adaptive mesh, Int. J. Comput. Math., 100(8) (2023), 1667-1682. https://doi.org/10.1080/00207160.2023.2208681
  • Kadalbajoo, M. K., Sharma, K. K., Parameter-uniform fitted mesh method for singularly perturbed delay differential equations with layer behavior, Electron. Trans. Numer. Anal., 23 (2006), 180-201.
  • Kadalbajoo, M. K., Yadaw, A. S., An $\epsilon$-uniform Ritz-Galerkin finite element method for numerical solution of singularly perturbed delay differential equations, Int. J. Pure Appl. Math., 55(2) (2009), 265-286.
  • Kadalbajoo, M. K., Gupta, V., A brief survey on numerical methods for solving singularly perturbed problems, Appl. Math. Comput., 217(8) (2010), 3641-3716. https://doi.org/10.1016/j.amc.2010.09.059
  • Kanth, A. R., Murali M. K. P., A numerical technique for solving nonlinear singularly perturbed delay differential equations, Math. Model. Anal., 23(1) (2018), 64-78. https://doi.org/10.3846/mma.2018.005
  • Kevorkian J., Cole J. D., Perturbation Methods in Applied Mathematics, Springer, New York, 1981.
  • Kiltu, G. G., Duressa, G. F., Aga Bullo, T., Numerical treatment of singularly perturbed delay reaction-diffusion equations, Int. J. Eng. Sci., 12(1) (2020), 15-24. doi:10.4314/ijest.v12i1.2
  • Kumar, D., Kadalbajoo, M. K., Numerical treatment of singularly perturbed delay differential equations using B-spline collocation method on Shishkin mesh, J. Numer. Anal. Ind., 7(3-4) (2012), 73-90.
  • Kumar, S., Kumar, M., High order parameter-uniform discretization for singularly perturbed parabolic partial differential equations with time delay, Comput. Math. Appl., (68)(10) (2014), 1355-1367. https://doi.org/10.1016/j.camwa.2014.09.004
  • Mbroh, N. A., Noutchie, S. C. O., Massoukou R. Y. M., A robust method of lines solution for singularly perturbed delay parabolic problem, Alex. Eng. J., 59(4) (2020), 2543-2554. https://doi.org/10.1016/j.aej.2020.03.042
  • Melesse, W. G., Tiruneh, A. A., Derese, G. A., Fitted mesh method for singularly perturbed delay differential turning point problems exhibiting twin boundary layers, J. Appl. Math. Inform., 38(1-2) (2020), 113-132. https://doi.org/10.14317/jami.2020.113
  • Miller, J. J. H., O’riordan, E., Shishkin, G. I., Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, World Scientific, 1996.
  • Mohapatra, J., Natesan, S., Uniform convergence analysis of finite difference scheme for singularly perturbed delay differential equation on an adaptively generated grid, Numer. Math. Theor. Meth. Appl., 3(1)(2010), 1-22. doi: 10.4208/nmtma.2009.m8015
  • Nayfeh, A. H., Introduction to Perturbation Techniques, Wiley, New York, 1993.
  • Nicaise, S., Xenophontos, C., Robust approximation of singularly perturbed delay differential equations by the hp finite element method, Comput. Methods Appl. Math., 13(1) (2013), 21-37. https://doi.org/10.1515/cmam-2012-0001
  • O’Malley, R. E., Singular perturbation methods for ordinary differential equations, Springer-Verlag, New York, 1991.
  • Podila, P. C., Gupta, T., Vigo-Aguiar, J., A numerical scheme for a weakly coupled system of singularly perturbed delay differential equations on an adaptive mesh, Comp. and Math. Methods., 3(3) (2021), e1104. https://doi.org/10.1002/cmm4.1104
  • Rai, P., Sharma, K. K., Numerical approximation for a class of singularly perturbed delay differential equations with boundary and interior layer(s), Numer. Algorithms, 85(1) (2020), 305-328. https://doi.org/10.1007/s11075-019-00815-6
  • Reddy, Y. N., Soujana, G. B. S. L., Phaneendra, K., Numerical integration method for singularly perturbed delay differential equations, Int. J. Appl. Sci., 10(3) (2012), 249-261. https://doi.org/10.6703/IJASE.2012.10(3).249
  • Roos H. G., Stynes, M., Tobiska, L., Numerical Methods for Singularly Perturbed Differential Equations, Springer-Verlag, Berlin, 1996.
  • Samarskii, A. A., The Theory of Difference Schemes, Marcel Dekker, New York, 2001.
  • Sekar, E., Tamilselvan, A., Finite difference scheme for singularly perturbed system of delay differential equations with integral boundary conditions, J. KSIAM, 22(3) (2018), 201-215. http://dx.doi.org/10.12941/jksiam.2018.22.201
  • Sharma, K. K., Rai, P., Mishra, P., A robust numerical scheme for singularly perturbed delay differential equations with turning point, Int. J. Comput. Methods Eng. Sci. Mech., 20(5) (2019), 423-433. https://doi.org/10.1080/15502287.2019.1687608
  • Showalter, R. E., The Sobolev equation II, Appl. Anal., 5(2) (1975), 81-99. https://doi.org/10.1080/00036817508839111
  • Singh, J., Kumar, S., Kumar, M., A domain decomposition method for solving singularly perturbed parabolic reaction-diffusion problems with time delay, Numer. Methods Partial Differ. Equ., 34(5) (2018), 1849-1866. https://doi.org/10.1002/num.22256
  • Sirisha, C. L., Reddy, Y. N., Numerical integration of singularly perturbed delay differential equations using exponential integrating factor, Math. Commun., 22(2) (2017), 251-264. https://hrcak.srce.hr/185984
  • Sobolev, S. L., About new problems in mathematical physics, Izv. Acad. Sci. USSR Math. 18(1) (1954), 3-50.
  • Subburayan, V., Ramanujam, N., Asymptotic initial value technique for singularly perturbed convection-diffusion delay problems with boundary and weak interior layers, Appl. Math. Lett., 25(12) (2012), 2272-2278. https://doi.org/10.1016/j.aml.2012.06.016
  • Vaid, M. K., Arora, G., Solution of second order singular perturbed delay differential equation using trigonometric B-spline, Int. J. Math. Eng. Manag. Sci., 4(2) (2019), 349-360.
  • Woldaregay, M. M., Aniley, W. T., Duressa G. F., Novel numerical scheme for singularly perturbed time delay convection-diffusion equation, Adv. Math. Phys., 2021 (2021), 1-13. https://doi.org/10.1155/2021/6641236
  • Yadav, S., Rai, P., A higher order scheme for singularly perturbed delay parabolic turning point problem, Eng. Comput., 38(2) (2021), 819-851. https://doi.org/10.1108/EC-03-2020-0172
  • Yüzbaşı, S¸., Sezer, M., Exponential collocation method for solutions of singularly perturbed delay differential equations, Abstr. Appl. Anal., 2013 (2013), Article ID: 493204. https://doi.org/10.1155/2013/493204
  • Zarin, H., On discontinuous Galerkin finite element method for singularly perturbed delay differential equations, Appl. Math. Lett., 38 (2014), 27-32. https://doi.org/10.1016/j.aml.2014.06.013
  • Zhang C., Tan, Z., Linearized compact difference methods combined with Richardson extrapolation for nonlinear delay Sobolev equations, Commun. Nonlinear Sci. Numer. Simul., 91 (2020), 105461. https://doi.org/10.1016/j.cnsns.2020.105461
Year 2024, , 569 - 587, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1327826

Abstract

References

  • Amirali, I., Amiraliyev, G. M., Cakir, M., Cimen, E., Explicit finite difference methods for the delay pseudo-parabolic equations, The Scientific World Journal, 2014 (2014). https://doi.org/10.1155/2014/497393
  • Amirali, I., Analysis of higher order difference method for a pseudo-parabolic equation with delay, Miskolc Math. Notes, 20(2) (2019), 755-766. DOI: 10.18514/MMN.2019.2895
  • Amirali, I., Amiraliyev, G. M., Three layer difference method for linear pseudo-parabolic equation with delay, J. Comput. Appl. Math., 401 (2022), 113786. https://doi.org/10.1016/j.cam.2021.113786
  • Amiraliyev, G. M., Mamedov, Y. D., Difference schemes on the uniform mesh for singularly perturbed pseudo-parabolic equations, Turk. J. Math., 19(3) (1995), 207-222.
  • Amiraliyev, G. M., Erdogan, F., Uniform numerical method for singularly perturbed delay differential equations, Comput. Math. Appl., 53(8) (2007), 1251-1259. https://doi.org/10.1016/j.camwa.2006.07.009
  • Amiraliyev, G. M., Duru, H., Amiraliyeva, I. G., A parameter-uniform numerical method for a Sobolev problem with initial layer, Numer. Algorithms, 44 (2007), 185-203. https://doi.org/10.1007/s11075-007-9096-0
  • Amiraliyev, G. M., Cimen, E., Numerical method for a singularly perturbed convection-diffusion problem with delay, Appl. Math. Comput., 216(8) (2010), 2351-2359. https://doi.org/10.1016/j.amc.2010.03.080
  • Amiraliyev, G. M., Cimen, E., Amirali, I., Cakir, M., High-order finite difference technique for delay pseudo-parabolic equations, J. Comput. Appl. Math., 321 (2017), 1-7. https://doi.org/10.1016/j.cam.2017.02.017
  • Amiraliyeva, I. G., Erdogan, F., Amiraliyev, G. M., A uniform numerical method for dealing with a singularly perturbed delay initial value problem, Appl. Math. Lett., 23(10) (2010), 1221-1225. https://doi.org/10.1016/j.aml.2010.06.002
  • Ansari, A. R., Bakr, S. A., Shishkin, G. I., A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations, J. Comput. Appl. Math., 205(1) (2007), 552-566. https://doi.org/10.1016/j.cam.2006.05.032
  • Arslan, D., A novel hybrid method for singularly perturbed delay differential equations, Gazi Univ. J. Sci., 32(1) (2019), 217-223.
  • Bansal, K., Sharma, K. K., Parameter-robust numerical scheme for time-dependent singularly perturbed reaction-diffusion problem with large delay, Numer. Funct. Anal. Optim., 39(2) (2018), 127-154. https://doi.org/10.1080/01630563.2016.1277742
  • Bawa, L. K., Lal, A. K., Kumar, V., An $\epsilon$-uniform hybrid scheme for singularly perturbed delay differential equations, Appl. Math. Comput., 217(21) (2011), 8216-8222. https://doi.org/10.1016/j.amc.2011.02.089
  • Cen, Z., A hybrid finite difference scheme for a class of singularly perturbed delay differential equations, Neural Parallel Sci. Comput., 16(3) (2008), 303-308.
  • Chakravarthy, P.P., Kumar, K., A novel method for singularly perturbed delay differential equations of reaction-diffusion type, Differ. Equ. Dyn. Syst., 29 (2021), 723-734. https://doi.org/10.1007/s12591-017-0399-x
  • Chen, S-B., Soradi-Zeid, S., Dutta, H., Mesrizadeh M., Johanshahi H., Chu Y-M., Reproducing kernel Hilbert space method for nonlinear second order singularly perturbed boundary value problems with time-delay, Chaos Solit., 144 (2021), 110674. https://doi.org/10.1016/j.chaos.2021.110674
  • Chiyaneh, A. B., Duru, H., Uniform difference method for singularly pertubated delay Sobolev problems, Quaest. Math., 43(12) (2020), 1713-1736. https://doi.org/10.2989/16073606.2019.1653395
  • Chiyaneh, A. B., Duru, H., A numerical scheme on S-mesh for the singularly perturbed initial boundary value Sobolev problems with large time delay, Journal of Mathematics, Mechanics and Computer Science, 117(1) (2023), 93-111. https://doi.org/10.26577/JMMCS.2023.v117.i1.08
  • Doolan, E. P., Miller, J. J. H., Schilders, W.H.A., Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 1980.
  • Ducrot, A., Magal, P., Seydi, O., A singularly perturbed delay differential equation modeling nosomial infections, Differ. Integral Equ., 29(3-4) (2016), 321-358. DOI:10.57262/die/1455806027
  • Duru, H., Gunes, B., The stability and convergence analysis for singularly perturbed Sobolev problems with Robin type boundary condition, Georgian Math. J., 30(3) (2023), 349-363. https://doi.org/10.1515/gmj-2023-2004
  • Erdogan, F., An exponentially fitted method for singularly perturbed delay differential equations, Adv. Differ. Equ., 2009 (2009), 1-9. doi:10.1155/2009/781579
  • Elango, S., Tamilselvan, A., Vadivel, R., Gunasekaran, N., Zhu, H., Cao, J., Li, X., Finite difference scheme for singularly perturbed reaction diffusion problem of partial delay differential equation with nonlocal boundary condition, Adv. Differ. Equ., 2021 (2021), 1-20. https://doi.org/10.1186/s13662-021-03296-x
  • Farrell, P., Hegarty, A. F., Miller, J. J. H., O’Riordan, E., Shishkin, G. I., Robust Computational Techniques for Boundary Layers, Chapman and Hall/CRC, 2000.
  • Feng, T., Ni, M., Internal layers for a quasi-linear singularly perturbed delay differential equation, J. Appl. Anal. Comput., 10(4) (2020), 1666-1682. DOI:10.11948/20190337
  • Gelu, F. W., Duressa, G. F., A uniformly convergent collocation method for singularly perturbed delay parabolic reaction-diffusion problem, Abstr. Appl. Anal., 2021, (2021), 1-11. https://doi.org/10.1155/2021/8835595
  • Gemechis, F., Gashu, G., Tesfaye, A., Reddy, Y. N., Numerical solution of singularly perturbed delay reaction-diffusion equations with layer or oscillatory behavior, Am. J. Numer. Anal., 5(1) (2017), 1-10. DOI:10.12691/ajna-5-1-1
  • Geng, F. Z., Qian, S. P., Piecewise reproducing kernel methods for singularly perturbed delay initial value problems, Appl. Math. Lett., 37 (2014), 67-71. https://doi.org/10.1016/j.aml.2014.05.014
  • Geng, F. Z., Qian, S. P., Modified reproducing kernel method for singularly perturbed boundary value problems with a delay, Appl. Math. Model., 39(18) (2015), 5592-5597. https://doi.org/10.1016/j.apm.2015.01.021
  • Govindarao, L., Mohapatra, J., A second order numerical method for singularly perturbed delay parabolic partial differential equation, Eng. Comput., 36(2) (2019), 420-444. https://doi.org/10.1108/EC-08-2018-0337
  • Govindarao, L., Mohapatra, J., Das, A., A fourth-order numerical scheme for singularly perturbed delay parabolic problem arising in population dynamics, J. Appl. Math. Comput., 63(1) (2020), 171-195. https://doi.org/10.1007/s12190-019-01313-7.
  • Gunes, B., Duru, H., A computational method for the singularly perturbed delay pseudo-parabolic differential equations on adaptive mesh, Int. J. Comput. Math., 100(8) (2023), 1667-1682. https://doi.org/10.1080/00207160.2023.2208681
  • Kadalbajoo, M. K., Sharma, K. K., Parameter-uniform fitted mesh method for singularly perturbed delay differential equations with layer behavior, Electron. Trans. Numer. Anal., 23 (2006), 180-201.
  • Kadalbajoo, M. K., Yadaw, A. S., An $\epsilon$-uniform Ritz-Galerkin finite element method for numerical solution of singularly perturbed delay differential equations, Int. J. Pure Appl. Math., 55(2) (2009), 265-286.
  • Kadalbajoo, M. K., Gupta, V., A brief survey on numerical methods for solving singularly perturbed problems, Appl. Math. Comput., 217(8) (2010), 3641-3716. https://doi.org/10.1016/j.amc.2010.09.059
  • Kanth, A. R., Murali M. K. P., A numerical technique for solving nonlinear singularly perturbed delay differential equations, Math. Model. Anal., 23(1) (2018), 64-78. https://doi.org/10.3846/mma.2018.005
  • Kevorkian J., Cole J. D., Perturbation Methods in Applied Mathematics, Springer, New York, 1981.
  • Kiltu, G. G., Duressa, G. F., Aga Bullo, T., Numerical treatment of singularly perturbed delay reaction-diffusion equations, Int. J. Eng. Sci., 12(1) (2020), 15-24. doi:10.4314/ijest.v12i1.2
  • Kumar, D., Kadalbajoo, M. K., Numerical treatment of singularly perturbed delay differential equations using B-spline collocation method on Shishkin mesh, J. Numer. Anal. Ind., 7(3-4) (2012), 73-90.
  • Kumar, S., Kumar, M., High order parameter-uniform discretization for singularly perturbed parabolic partial differential equations with time delay, Comput. Math. Appl., (68)(10) (2014), 1355-1367. https://doi.org/10.1016/j.camwa.2014.09.004
  • Mbroh, N. A., Noutchie, S. C. O., Massoukou R. Y. M., A robust method of lines solution for singularly perturbed delay parabolic problem, Alex. Eng. J., 59(4) (2020), 2543-2554. https://doi.org/10.1016/j.aej.2020.03.042
  • Melesse, W. G., Tiruneh, A. A., Derese, G. A., Fitted mesh method for singularly perturbed delay differential turning point problems exhibiting twin boundary layers, J. Appl. Math. Inform., 38(1-2) (2020), 113-132. https://doi.org/10.14317/jami.2020.113
  • Miller, J. J. H., O’riordan, E., Shishkin, G. I., Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, World Scientific, 1996.
  • Mohapatra, J., Natesan, S., Uniform convergence analysis of finite difference scheme for singularly perturbed delay differential equation on an adaptively generated grid, Numer. Math. Theor. Meth. Appl., 3(1)(2010), 1-22. doi: 10.4208/nmtma.2009.m8015
  • Nayfeh, A. H., Introduction to Perturbation Techniques, Wiley, New York, 1993.
  • Nicaise, S., Xenophontos, C., Robust approximation of singularly perturbed delay differential equations by the hp finite element method, Comput. Methods Appl. Math., 13(1) (2013), 21-37. https://doi.org/10.1515/cmam-2012-0001
  • O’Malley, R. E., Singular perturbation methods for ordinary differential equations, Springer-Verlag, New York, 1991.
  • Podila, P. C., Gupta, T., Vigo-Aguiar, J., A numerical scheme for a weakly coupled system of singularly perturbed delay differential equations on an adaptive mesh, Comp. and Math. Methods., 3(3) (2021), e1104. https://doi.org/10.1002/cmm4.1104
  • Rai, P., Sharma, K. K., Numerical approximation for a class of singularly perturbed delay differential equations with boundary and interior layer(s), Numer. Algorithms, 85(1) (2020), 305-328. https://doi.org/10.1007/s11075-019-00815-6
  • Reddy, Y. N., Soujana, G. B. S. L., Phaneendra, K., Numerical integration method for singularly perturbed delay differential equations, Int. J. Appl. Sci., 10(3) (2012), 249-261. https://doi.org/10.6703/IJASE.2012.10(3).249
  • Roos H. G., Stynes, M., Tobiska, L., Numerical Methods for Singularly Perturbed Differential Equations, Springer-Verlag, Berlin, 1996.
  • Samarskii, A. A., The Theory of Difference Schemes, Marcel Dekker, New York, 2001.
  • Sekar, E., Tamilselvan, A., Finite difference scheme for singularly perturbed system of delay differential equations with integral boundary conditions, J. KSIAM, 22(3) (2018), 201-215. http://dx.doi.org/10.12941/jksiam.2018.22.201
  • Sharma, K. K., Rai, P., Mishra, P., A robust numerical scheme for singularly perturbed delay differential equations with turning point, Int. J. Comput. Methods Eng. Sci. Mech., 20(5) (2019), 423-433. https://doi.org/10.1080/15502287.2019.1687608
  • Showalter, R. E., The Sobolev equation II, Appl. Anal., 5(2) (1975), 81-99. https://doi.org/10.1080/00036817508839111
  • Singh, J., Kumar, S., Kumar, M., A domain decomposition method for solving singularly perturbed parabolic reaction-diffusion problems with time delay, Numer. Methods Partial Differ. Equ., 34(5) (2018), 1849-1866. https://doi.org/10.1002/num.22256
  • Sirisha, C. L., Reddy, Y. N., Numerical integration of singularly perturbed delay differential equations using exponential integrating factor, Math. Commun., 22(2) (2017), 251-264. https://hrcak.srce.hr/185984
  • Sobolev, S. L., About new problems in mathematical physics, Izv. Acad. Sci. USSR Math. 18(1) (1954), 3-50.
  • Subburayan, V., Ramanujam, N., Asymptotic initial value technique for singularly perturbed convection-diffusion delay problems with boundary and weak interior layers, Appl. Math. Lett., 25(12) (2012), 2272-2278. https://doi.org/10.1016/j.aml.2012.06.016
  • Vaid, M. K., Arora, G., Solution of second order singular perturbed delay differential equation using trigonometric B-spline, Int. J. Math. Eng. Manag. Sci., 4(2) (2019), 349-360.
  • Woldaregay, M. M., Aniley, W. T., Duressa G. F., Novel numerical scheme for singularly perturbed time delay convection-diffusion equation, Adv. Math. Phys., 2021 (2021), 1-13. https://doi.org/10.1155/2021/6641236
  • Yadav, S., Rai, P., A higher order scheme for singularly perturbed delay parabolic turning point problem, Eng. Comput., 38(2) (2021), 819-851. https://doi.org/10.1108/EC-03-2020-0172
  • Yüzbaşı, S¸., Sezer, M., Exponential collocation method for solutions of singularly perturbed delay differential equations, Abstr. Appl. Anal., 2013 (2013), Article ID: 493204. https://doi.org/10.1155/2013/493204
  • Zarin, H., On discontinuous Galerkin finite element method for singularly perturbed delay differential equations, Appl. Math. Lett., 38 (2014), 27-32. https://doi.org/10.1016/j.aml.2014.06.013
  • Zhang C., Tan, Z., Linearized compact difference methods combined with Richardson extrapolation for nonlinear delay Sobolev equations, Commun. Nonlinear Sci. Numer. Simul., 91 (2020), 105461. https://doi.org/10.1016/j.cnsns.2020.105461
There are 65 citations in total.

Details

Primary Language English
Subjects Numerical Solution of Differential and Integral Equations, Numerical Analysis
Journal Section Research Articles
Authors

Baransel Güneş 0000-0002-3265-8881

Hakkı Duru 0000-0002-3179-3758

Publication Date June 21, 2024
Submission Date July 15, 2023
Acceptance Date February 24, 2024
Published in Issue Year 2024

Cite

APA Güneş, B., & Duru, H. (2024). A second-order numerical method for pseudo-parabolic equations having both layer behavior and delay parameter. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(2), 569-587. https://doi.org/10.31801/cfsuasmas.1327826
AMA Güneş B, Duru H. A second-order numerical method for pseudo-parabolic equations having both layer behavior and delay parameter. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2024;73(2):569-587. doi:10.31801/cfsuasmas.1327826
Chicago Güneş, Baransel, and Hakkı Duru. “A Second-Order Numerical Method for Pseudo-Parabolic Equations Having Both Layer Behavior and Delay Parameter”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 2 (June 2024): 569-87. https://doi.org/10.31801/cfsuasmas.1327826.
EndNote Güneş B, Duru H (June 1, 2024) A second-order numerical method for pseudo-parabolic equations having both layer behavior and delay parameter. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 2 569–587.
IEEE B. Güneş and H. Duru, “A second-order numerical method for pseudo-parabolic equations having both layer behavior and delay parameter”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 2, pp. 569–587, 2024, doi: 10.31801/cfsuasmas.1327826.
ISNAD Güneş, Baransel - Duru, Hakkı. “A Second-Order Numerical Method for Pseudo-Parabolic Equations Having Both Layer Behavior and Delay Parameter”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/2 (June 2024), 569-587. https://doi.org/10.31801/cfsuasmas.1327826.
JAMA Güneş B, Duru H. A second-order numerical method for pseudo-parabolic equations having both layer behavior and delay parameter. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:569–587.
MLA Güneş, Baransel and Hakkı Duru. “A Second-Order Numerical Method for Pseudo-Parabolic Equations Having Both Layer Behavior and Delay Parameter”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 2, 2024, pp. 569-87, doi:10.31801/cfsuasmas.1327826.
Vancouver Güneş B, Duru H. A second-order numerical method for pseudo-parabolic equations having both layer behavior and delay parameter. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(2):569-87.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.