Research Article
BibTex RIS Cite

$B-$ Riezs potential in $B-$ local Morrey-Lorentz spaces

Year 2024, , 437 - 449, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1359782

Abstract

In this paper, the Riesz potential (B−Riesz potential) which are generated by the Laplace-Bessel differential operator will be studied. We obtain the necessary and sufficient conditions for the boundedness of the B−Riesz potential $I_{\gamma }^{\alpha }$ in the B-local Morrey-Lorentz spaces $M_{p,q,\lambda,\gamma }^{loc}(\mathbb{R}_{k,+}^{n})$ with the use of the rearrangement inequalities and boundedness of the Hardy operators $H_{\upsilon }^{\beta }$ and $\mathcal{H}_{\upsilon}^{\beta }$ with power weights.

References

  • Aykol, C., Guliyev, V. S., Küçükaslan, A., Şerbetçi, A., The boundedness of Hilbert transform in the local Morrey-Lorentz spaces, Integral Transforms Spec. Funct., 27(4) (2016), 318–330. https://doi.org/10.1080/10652469.2015.1121483
  • Aykol, C., Guliyev, V. S., Şerbetçi, A., Boundedness of the maximal operator in the local Morrey-Lorentz spaces, J. Inequal. Appl., 2013(1) (2013), 1–11. https://doi.org/10.1186/1029-242X-2013-346
  • Aykol, C., Kaya, E., B−maximal operators, B−singular integral operators and B−Riesz potentials in variable exponent Lorentz spaces, Filomat, 37(17) (2023), 5765–5774. https://doi.org/10.2298/FIL2317765A
  • Aykol, C., Şerbetçi, A., On the boundedness of fractional B−maximal operators in the Lorentz spaces $L_{p,q,\gamma }(\mathbb{R}_{+}^{n})$, An. St. Univ. Ovidius Constanta, 17(2) (2009), 27–38.
  • Bennett, C., Sharpley, R., Interpolation of Operators, Academic Press, Boston, 1988.
  • Burenkov, V. I., Guliyev, H. V., Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces, Stud. Math., 163(2) (2004), 157–176.
  • Guliyev, V. S., On maximal function and fractional integral, associated with the Bessel differential operator, Math. Inequal. Appl., 6(2) (2003), 317–330. dx.doi.org/10.7153/mia-06-30
  • Guliyev, V. S., Sobolev theorems for anisotropic Riesz-Bessel potentials on Morrey-Bessel spaces, Dokl. Akad. Nauk, 367(2) (1999), 155–156.
  • Guliyev, V. S., Sobolev theorems for the Riesz B−potentials, Doklady Mathematics, 358 (1998), 450–451.
  • Guliyev, V. S., Şerbetçi, A., Ekincioğlu, I., On boundedness of the generalized B−potential integral operators in the Lorentz spaces, Integral Transforms Spec. Funct., 18(12) (2007), 885–895. https://doi.org/10.1080/10652460701510980
  • Guliyev, V. S., Şeerbetçi, A., Ekincioğlu, I., Necessary and sufficient conditions for the boundedness of rough B−fractional integral operators in the Lorentz spaces, J. Math. Anal. Appl., 336 (2007), 425–437. https://doi.org/10.1016/j.jmaa.2007.02.080
  • Guliyev, V. S., Safarov, Z. V., Şerbetçi, A., On the rearrangement estimates and the boundedness of the generalized fractional integrals associated with the Laplace-Bessel differential operator, Acta Math. Hung., 119 (2008), 201–217. https://doi.org/10.1007/s10474-007-6107-5
  • Guliyev, V. S., Küçükaslan A., Aykol, C., Şerbetçi, A., Riesz potential in the local Morrey-Lorentz Spaces and some applications, Georgian Math. J., 27(4) (2020), 557–567. https://doi.org/10.1515/gmj-2018-0065
  • Guliyev, V. S., Mustafayev, R. C., Integral operators of potential type in spaces of homogeneous type, Dokl. Akad. Nauk, Ross. Akad. Nauk, 354(6) (1997), 730–732.
  • Guliyev, V. S., Mustafayev, R. C., Fractional integrals in spaces of functions defined on spaces of homogeneous type, Anal. Math., 24(3) (1998), 181–200
  • Klyuchantsev, M. I., Singular integrals generated by the generalized shift operator I, Sibirsk. Math. Zh., 11(4) (1970), 810–821. https://doi.org/10.1007/BF00969676
  • Levitan, B. M., Bessel function expansions in series and Fourier integrals, Uspekhi Mat. Nauk., 6 2(42) (1951), 102–143.
  • Lorentz, G. G., Some new function spaces, Ann. Math. 51(1) (1950), 37–55. https://doi.org/10.2307/1969496
  • Lorentz, G. G., On the theory of spaces $\Lambda$, Pac. J. Math. 1(3) (1951), 411–429.
  • Peetre, J., Nouvelles proprietes d’espaces d’interpolation, C. R. Acad. Sci., Paris 256 (1963), 1424–1426.
  • Samko, N., Weighted Hardy and potential operators in Morrey spaces, J. Funct. Spaces, 2012 (2012), Article ID 678171. https://doi.org/10.1155/2012/678171
  • Stein, E. M., Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971.
Year 2024, , 437 - 449, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1359782

Abstract

References

  • Aykol, C., Guliyev, V. S., Küçükaslan, A., Şerbetçi, A., The boundedness of Hilbert transform in the local Morrey-Lorentz spaces, Integral Transforms Spec. Funct., 27(4) (2016), 318–330. https://doi.org/10.1080/10652469.2015.1121483
  • Aykol, C., Guliyev, V. S., Şerbetçi, A., Boundedness of the maximal operator in the local Morrey-Lorentz spaces, J. Inequal. Appl., 2013(1) (2013), 1–11. https://doi.org/10.1186/1029-242X-2013-346
  • Aykol, C., Kaya, E., B−maximal operators, B−singular integral operators and B−Riesz potentials in variable exponent Lorentz spaces, Filomat, 37(17) (2023), 5765–5774. https://doi.org/10.2298/FIL2317765A
  • Aykol, C., Şerbetçi, A., On the boundedness of fractional B−maximal operators in the Lorentz spaces $L_{p,q,\gamma }(\mathbb{R}_{+}^{n})$, An. St. Univ. Ovidius Constanta, 17(2) (2009), 27–38.
  • Bennett, C., Sharpley, R., Interpolation of Operators, Academic Press, Boston, 1988.
  • Burenkov, V. I., Guliyev, H. V., Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces, Stud. Math., 163(2) (2004), 157–176.
  • Guliyev, V. S., On maximal function and fractional integral, associated with the Bessel differential operator, Math. Inequal. Appl., 6(2) (2003), 317–330. dx.doi.org/10.7153/mia-06-30
  • Guliyev, V. S., Sobolev theorems for anisotropic Riesz-Bessel potentials on Morrey-Bessel spaces, Dokl. Akad. Nauk, 367(2) (1999), 155–156.
  • Guliyev, V. S., Sobolev theorems for the Riesz B−potentials, Doklady Mathematics, 358 (1998), 450–451.
  • Guliyev, V. S., Şerbetçi, A., Ekincioğlu, I., On boundedness of the generalized B−potential integral operators in the Lorentz spaces, Integral Transforms Spec. Funct., 18(12) (2007), 885–895. https://doi.org/10.1080/10652460701510980
  • Guliyev, V. S., Şeerbetçi, A., Ekincioğlu, I., Necessary and sufficient conditions for the boundedness of rough B−fractional integral operators in the Lorentz spaces, J. Math. Anal. Appl., 336 (2007), 425–437. https://doi.org/10.1016/j.jmaa.2007.02.080
  • Guliyev, V. S., Safarov, Z. V., Şerbetçi, A., On the rearrangement estimates and the boundedness of the generalized fractional integrals associated with the Laplace-Bessel differential operator, Acta Math. Hung., 119 (2008), 201–217. https://doi.org/10.1007/s10474-007-6107-5
  • Guliyev, V. S., Küçükaslan A., Aykol, C., Şerbetçi, A., Riesz potential in the local Morrey-Lorentz Spaces and some applications, Georgian Math. J., 27(4) (2020), 557–567. https://doi.org/10.1515/gmj-2018-0065
  • Guliyev, V. S., Mustafayev, R. C., Integral operators of potential type in spaces of homogeneous type, Dokl. Akad. Nauk, Ross. Akad. Nauk, 354(6) (1997), 730–732.
  • Guliyev, V. S., Mustafayev, R. C., Fractional integrals in spaces of functions defined on spaces of homogeneous type, Anal. Math., 24(3) (1998), 181–200
  • Klyuchantsev, M. I., Singular integrals generated by the generalized shift operator I, Sibirsk. Math. Zh., 11(4) (1970), 810–821. https://doi.org/10.1007/BF00969676
  • Levitan, B. M., Bessel function expansions in series and Fourier integrals, Uspekhi Mat. Nauk., 6 2(42) (1951), 102–143.
  • Lorentz, G. G., Some new function spaces, Ann. Math. 51(1) (1950), 37–55. https://doi.org/10.2307/1969496
  • Lorentz, G. G., On the theory of spaces $\Lambda$, Pac. J. Math. 1(3) (1951), 411–429.
  • Peetre, J., Nouvelles proprietes d’espaces d’interpolation, C. R. Acad. Sci., Paris 256 (1963), 1424–1426.
  • Samko, N., Weighted Hardy and potential operators in Morrey spaces, J. Funct. Spaces, 2012 (2012), Article ID 678171. https://doi.org/10.1155/2012/678171
  • Stein, E. M., Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971.
There are 22 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Research Articles
Authors

Esra Kaya 0000-0002-6971-0452

Canay Aykol 0000-0002-2854-6369

Publication Date June 21, 2024
Submission Date September 13, 2023
Acceptance Date February 7, 2024
Published in Issue Year 2024

Cite

APA Kaya, E., & Aykol, C. (2024). $B-$ Riezs potential in $B-$ local Morrey-Lorentz spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(2), 437-449. https://doi.org/10.31801/cfsuasmas.1359782
AMA Kaya E, Aykol C. $B-$ Riezs potential in $B-$ local Morrey-Lorentz spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2024;73(2):437-449. doi:10.31801/cfsuasmas.1359782
Chicago Kaya, Esra, and Canay Aykol. “$B-$ Riezs Potential in $B-$ Local Morrey-Lorentz Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 2 (June 2024): 437-49. https://doi.org/10.31801/cfsuasmas.1359782.
EndNote Kaya E, Aykol C (June 1, 2024) $B-$ Riezs potential in $B-$ local Morrey-Lorentz spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 2 437–449.
IEEE E. Kaya and C. Aykol, “$B-$ Riezs potential in $B-$ local Morrey-Lorentz spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 2, pp. 437–449, 2024, doi: 10.31801/cfsuasmas.1359782.
ISNAD Kaya, Esra - Aykol, Canay. “$B-$ Riezs Potential in $B-$ Local Morrey-Lorentz Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/2 (June 2024), 437-449. https://doi.org/10.31801/cfsuasmas.1359782.
JAMA Kaya E, Aykol C. $B-$ Riezs potential in $B-$ local Morrey-Lorentz spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:437–449.
MLA Kaya, Esra and Canay Aykol. “$B-$ Riezs Potential in $B-$ Local Morrey-Lorentz Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 2, 2024, pp. 437-49, doi:10.31801/cfsuasmas.1359782.
Vancouver Kaya E, Aykol C. $B-$ Riezs potential in $B-$ local Morrey-Lorentz spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(2):437-49.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.