Research Article
BibTex RIS Cite

General logarithmic control modulo and Tauberian remainder theorems

Year 2024, , 391 - 398, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1380675

Abstract

Let $\lambda=(\lambda_n)$ be a nondecreasing sequence of positive numbers such that $\lambda_n\to\infty$. A sequence $(\xi_n)$ is called $\lambda$-bounded if \begin{equation*} \lambda_n(\xi_n-\alpha)=O(1)\end{equation*} with the limit $\displaystyle{\lim_{n\rightarrow \infty}\xi_n=\alpha}$. In this work, we obtain several Tauberian remainder theorems on $\lambda$-bounded sequences for the logarithmic summability method with help of general logarithmic control modulo of the oscillatory behavior. Tauber conditions in our main results are on the generator sequence and the general logarithmic control modulo.

References

  • Hardy, G. H., Divergent Series, Clarendon Press, Oxford, 1949.
  • Kwee, B., A Tauberian theorem for the logarithmic method of summation, Proc. Camb. Philos. Soc., 63(2) (1966), 401-405. https://doi.org/10.1017/S0305004100041323
  • Ishiguro, K., On the summability methods of logarithmic type, Proc. Japan Acad., 38(10) (1962), 703–705. https://doi.org/10.3792/pja/1195523203
  • Ishiguro, K., A converse theorem on the summability methods, Proc. Japan Acad., 39(1) (1963), 38–41. https://doi.org/10.3792/pja/1195523177
  • Ishiguro, K., Tauberian theorems concerning the summability methods of logarithmic type, Proc. Jpn. Acad., 39(3) (1963), 156-159. https://doi.org/10.3792/pja/1195523110
  • Moricz, F., Necessary and sufficient Tauberian conditions for the logarithmic summability of functions and sequences, Studia Math., 219 (2013), 109–121. https://doi.org/10.4064/sm219-2-2
  • Totur, Ü., Okur, M. A., On Tauberian conditions for the logarithmic methods of integrability, Bull. Malays. Math. Sci. Soc., 41 (2018), 879–892. https://doi.org/10.1007/s40840-016-0371-x
  • Okur, M. A., Totur, Ü., Tauberian theorems for the logarithmic summability methods of integrals, Positivity, 23 (2019), 55–73. https://doi.org/10.1007/s11117-018-0592-3
  • Sezer, S. A., Çanak, İ., Tauberian theorems for the summability methods of logarithmic type, Bull. Malays. Math. Sci. Soc., 41 (2018), 1977–1994. https://doi.org/10.1007/s40840-016-0437-9
  • Sezer, S. A., Çanak, İ., Tauberian conditions of slowly decreasing type for the logarithmic power series method, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 90 (2020), 135–139. https://doi.org/10.1007/s40010-018-0544-0
  • Kangro, G., A Tauberian remainder theorem for the Riesz method, Tartu Riikl. Ül. Toimetised, 277 (1971), 155–160.
  • Tammeraid, I., Tauberian theorems with a remainder term for the Ces`aro and Hölder summability methods, Tartu Riikl. ¨ Ul. Toimetised, 277 (1971), 161–170.
  • Tammeraid, I., Tauberian theorems with a remainder term for the Euler-Knopp summability method, Tartu Riikl. ¨ Ul. Toimetised, 277 (1971), 171–182.
  • Tammeraid, I., Two Tauberian remiander theorems for the Cesaro method of summability, Proc. Estonian Acad. Sci. Phys. Math., 49(4) (2000), 225–232. https://doi.org/10.3176/phys.math.2000.4.03
  • Kangro, G., Summability factors of Bohr-Hardy type for a given rate. I, II., Eesti NSV Tead. Akad. Toimetised Füüs.-Mat., 18 (1969), 137–146, 387–395.
  • Meronen, O., Tammeraid, I., General control modulo and Tauberian remainder theorems for (C, 1) summability, Math. Model. Anal., 18(1) (2013), 97–102. https://doi.org/10.3846/13926292.2013.758674
  • Dik, M., Tauberian theorems for sequences with moderately oscillatory control moduli, Math. Morav., 5 (2001), 57–94. https://doi.org/10.5937/matmor0105057d
  • Sezer, S. A., Çanak, İ., Tauberian remainder theorems for the weighted mean method of summability, Math. Model. Anal., 19(2) (2014), 275–280. https://doi.org/10.3846/13926292.2014.910280
  • Sezer, S. A., Çanak, İ., Tauberian remiander theorems for iterations of methods of weighted means, C. R. Acad. Bulg. Sci., 72(1) (2019), 3–12. https://doi.org/10.7546/crabs.2019.01.01
  • Totur, Ü., Okur, M. A., Some Tauberian remainder theorems for Hölder summability, Math. Model. Anal., 20(2) (2015), 139–147. https://doi.org/10.3846/13926292.2015.1011719
  • Totur, Ü., Okur, M. A., On Tauberian remainder theorems for Cesaro summability method of noninteger order, Miskolc Math. Notes, 16(2) (2016), 1243–1252. https://doi.org/10.18514/MMN.2015.1288
Year 2024, , 391 - 398, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1380675

Abstract

References

  • Hardy, G. H., Divergent Series, Clarendon Press, Oxford, 1949.
  • Kwee, B., A Tauberian theorem for the logarithmic method of summation, Proc. Camb. Philos. Soc., 63(2) (1966), 401-405. https://doi.org/10.1017/S0305004100041323
  • Ishiguro, K., On the summability methods of logarithmic type, Proc. Japan Acad., 38(10) (1962), 703–705. https://doi.org/10.3792/pja/1195523203
  • Ishiguro, K., A converse theorem on the summability methods, Proc. Japan Acad., 39(1) (1963), 38–41. https://doi.org/10.3792/pja/1195523177
  • Ishiguro, K., Tauberian theorems concerning the summability methods of logarithmic type, Proc. Jpn. Acad., 39(3) (1963), 156-159. https://doi.org/10.3792/pja/1195523110
  • Moricz, F., Necessary and sufficient Tauberian conditions for the logarithmic summability of functions and sequences, Studia Math., 219 (2013), 109–121. https://doi.org/10.4064/sm219-2-2
  • Totur, Ü., Okur, M. A., On Tauberian conditions for the logarithmic methods of integrability, Bull. Malays. Math. Sci. Soc., 41 (2018), 879–892. https://doi.org/10.1007/s40840-016-0371-x
  • Okur, M. A., Totur, Ü., Tauberian theorems for the logarithmic summability methods of integrals, Positivity, 23 (2019), 55–73. https://doi.org/10.1007/s11117-018-0592-3
  • Sezer, S. A., Çanak, İ., Tauberian theorems for the summability methods of logarithmic type, Bull. Malays. Math. Sci. Soc., 41 (2018), 1977–1994. https://doi.org/10.1007/s40840-016-0437-9
  • Sezer, S. A., Çanak, İ., Tauberian conditions of slowly decreasing type for the logarithmic power series method, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 90 (2020), 135–139. https://doi.org/10.1007/s40010-018-0544-0
  • Kangro, G., A Tauberian remainder theorem for the Riesz method, Tartu Riikl. Ül. Toimetised, 277 (1971), 155–160.
  • Tammeraid, I., Tauberian theorems with a remainder term for the Ces`aro and Hölder summability methods, Tartu Riikl. ¨ Ul. Toimetised, 277 (1971), 161–170.
  • Tammeraid, I., Tauberian theorems with a remainder term for the Euler-Knopp summability method, Tartu Riikl. ¨ Ul. Toimetised, 277 (1971), 171–182.
  • Tammeraid, I., Two Tauberian remiander theorems for the Cesaro method of summability, Proc. Estonian Acad. Sci. Phys. Math., 49(4) (2000), 225–232. https://doi.org/10.3176/phys.math.2000.4.03
  • Kangro, G., Summability factors of Bohr-Hardy type for a given rate. I, II., Eesti NSV Tead. Akad. Toimetised Füüs.-Mat., 18 (1969), 137–146, 387–395.
  • Meronen, O., Tammeraid, I., General control modulo and Tauberian remainder theorems for (C, 1) summability, Math. Model. Anal., 18(1) (2013), 97–102. https://doi.org/10.3846/13926292.2013.758674
  • Dik, M., Tauberian theorems for sequences with moderately oscillatory control moduli, Math. Morav., 5 (2001), 57–94. https://doi.org/10.5937/matmor0105057d
  • Sezer, S. A., Çanak, İ., Tauberian remainder theorems for the weighted mean method of summability, Math. Model. Anal., 19(2) (2014), 275–280. https://doi.org/10.3846/13926292.2014.910280
  • Sezer, S. A., Çanak, İ., Tauberian remiander theorems for iterations of methods of weighted means, C. R. Acad. Bulg. Sci., 72(1) (2019), 3–12. https://doi.org/10.7546/crabs.2019.01.01
  • Totur, Ü., Okur, M. A., Some Tauberian remainder theorems for Hölder summability, Math. Model. Anal., 20(2) (2015), 139–147. https://doi.org/10.3846/13926292.2015.1011719
  • Totur, Ü., Okur, M. A., On Tauberian remainder theorems for Cesaro summability method of noninteger order, Miskolc Math. Notes, 16(2) (2016), 1243–1252. https://doi.org/10.18514/MMN.2015.1288
There are 21 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Articles
Authors

Muhammet Ali Okur 0000-0002-8352-2570

Publication Date June 21, 2024
Submission Date October 25, 2023
Acceptance Date December 19, 2023
Published in Issue Year 2024

Cite

APA Okur, M. A. (2024). General logarithmic control modulo and Tauberian remainder theorems. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(2), 391-398. https://doi.org/10.31801/cfsuasmas.1380675
AMA Okur MA. General logarithmic control modulo and Tauberian remainder theorems. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2024;73(2):391-398. doi:10.31801/cfsuasmas.1380675
Chicago Okur, Muhammet Ali. “General Logarithmic Control Modulo and Tauberian Remainder Theorems”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 2 (June 2024): 391-98. https://doi.org/10.31801/cfsuasmas.1380675.
EndNote Okur MA (June 1, 2024) General logarithmic control modulo and Tauberian remainder theorems. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 2 391–398.
IEEE M. A. Okur, “General logarithmic control modulo and Tauberian remainder theorems”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 2, pp. 391–398, 2024, doi: 10.31801/cfsuasmas.1380675.
ISNAD Okur, Muhammet Ali. “General Logarithmic Control Modulo and Tauberian Remainder Theorems”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/2 (June 2024), 391-398. https://doi.org/10.31801/cfsuasmas.1380675.
JAMA Okur MA. General logarithmic control modulo and Tauberian remainder theorems. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:391–398.
MLA Okur, Muhammet Ali. “General Logarithmic Control Modulo and Tauberian Remainder Theorems”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 2, 2024, pp. 391-8, doi:10.31801/cfsuasmas.1380675.
Vancouver Okur MA. General logarithmic control modulo and Tauberian remainder theorems. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(2):391-8.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.