Research Article
BibTex RIS Cite

Beta generated slash distribution: derivation, properties and application to lifetime data

Year 2024, , 641 - 663, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1398868

Abstract

In this paper, we introduce a new distribution called beta generated slash distribution by applying the slash construction idea to the existing beta distribution of first kind. The statistical properties of the distribution such as moments, skewness, kurtosis, median, moment generating function, mean deviations, Lorenz and Bonferroni curves, order statistics, Mills ratio, hazard rate functions have been discussed. The location-scale form of the beta generated slash distribution is also established. The hazard rate function is seen to assume different shapes depending upon the values of the parameters. The method of maximum likelihood is used to estimate the unknown parameters of beta generated slash distribution and a simulation study is conducted to check the performance of these estimates. Finally, the proposed distribution is applied to a real-life data set on failure times and the goodness-of-fit of the fitted distribution is compared with four other competing distributions to show its flexibility and advantage particularly in modeling heavy tailed data sets.

References

  • Eugene, N., Lee, C., Famoye, F., Beta-normal distribution and its applications, Commun. Stat. Theory Methods, 31(4) (2002), 497-512. https://doi.org/10.1081/STA-120003130
  • Nadarajah, S., Kotz, S., The beta Gumbel distribution, Math. Probl. Eng., 2004(4) (2004), 323-332. https://doi.org/10.1155/S1024123X04403068
  • Nadarajah, S., Kotz, S., The beta exponential distribution, Reliab. Eng. Syst. Saf., 91(6) (2006), 689-697. https://doi.org/10.1016/j.ress.2005.05.008
  • Cordeiro, G. M., Gomes, A. E., da-Silva, C. Q., Ortega, E. M., The beta exponentiated Weibull distribution, J. Stat. Comput. Simul., 83(1) (2013), 114-138. https://doi.org/10.1080/00949655.2011.615838
  • Domma, F., Condino, F., The beta-Dagum distribution: definition and properties, Commun. Stat. Theory Methods, 42(22) (2013), 4070-4090. https://doi.org/10.1080/03610926.2011.647219
  • Rogers, W. H., Tukey, J. W., Understanding some long-tailed symmetrical distributions, Statistica Neerlandica, 26(3) (1972), 211-226. https://doi.org/10.1111/j.1467-9574.1972.tb00191.x
  • Reyes, J., Gomez, H.W., Bolfarine, H., Modified slash distribution, Statistics, 47(5) (2013), 929-941. https://doi.org/10.1080/02331888.2012.694441
  • Reyes, J., Barranco-Chamorro, I., Gomez, H.W., Generalized modified slash distribution with applications, Communications in Statistics-Theory and Methods, 49(8) (2020), 2025-2048. https://doi.org/10.1080/03610926.2019.1568484
  • Korkmaz, M.C., A new heavy-tailed distribution defined on the bounded interval: the logit slash distribution and its application, Journal of Applied Statistics, 47(12) (2017), 2097-2119. https://doi.org/10.1080/02664763.2019.1704701
  • Gui, W., Chen, P. H., Wu, H., An epsilon half normal slash distribution and its applications to nonnegative measurements, (2013). http://dx.doi.org/10.4236/ojop.2013.21001
  • del Castillo, J.M., The extended slash distribution of the sum of two independent logistic random variables, Communications in Statistics-Theory and Methods, 51(23) (2022), 8110-8129. https://doi.org/10.1080/03610926.2021.1888123
  • Reyes, J., Vilca, F., Gallardo, D.I., Gomez, H.W., Modified slash Birnbaum-Saunders distribution, Hacettepe Journal of Mathematics and Statistics, 46(5) (2017), 969-984. 10.15672/HJMS.201611215603
  • Gomez, Y.M., Firinguetti-Limone, L., Gallardo, D.I., Gomez, H.W., An extension of the Akash distribution: properties, inference and application, Mathematics, 12(1) (2023), 31. https://doi.org/10.3390/math12010031
  • Wang, J., Genton, M. G., The multivariate skew-slash distribution, J. Stat. Plan. Inference, 136(1) (2006), 209-220. https://doi.org/10.1016/j.jspi.2004.06.023
  • Punathumparambath, B., The multivariate asymmetric slash Laplace distribution and its applications, Statistica, 72(2) (2012), 235-249. https://doi.org/10.6092/issn.1973-2201/3645
  • Arslan, O., An alternative multivariate skew-slash distribution, Statistics & Probability Letters, 78(16) (2008),2756-2761. https://doi.org/10.1016/j.spl.2008.03.017
  • Genç A. İ., A generalization of the univariate slash by a scale-mixtured exponential power distribution, Communications in Statistics—Simulation and Computation, 36(5) (2007), 937-947. https://doi.org/10.1080/03610910701539161
  • Punathumparambath, B., A new family of skewed slash distributions generated by the normal kernel, Statistica, 71(3) (2011), 345-353. https://doi.org/10.6092/issn.1973-2201/3618
  • Punathumparambath, B., A new familiy of skewed slash distributions generated by the Cauchy Kernel, Communications in Statistics-Theory and Methods, 42(13) (2013), 2351-2361. https://doi.org/10.1080/03610926.2011.599508
  • Mosteller, F., Tukey, J.W., Data Analysis and Regression. A Second Course in Statistics, Addison-Wesley Series in Behavioral Science: Quantitative Methods, 1977. https://ui.adsabs.harvard.edu/abs/1977dars.book.....M/abstract
  • Kafadar, K., A biweight approach to the one-sample problem,Journal of the American Statistical Association, 77(378) (1982), 416-424. https://doi.org/10.2307/2287262
  • Jones, M. C., On univariate slash distributions, continuous and discrete, Annals of the Institute of Statistical Mathematics, 72(3) (2020), 645-657. https://doi.org/10.1007/s10463-019-00708-4
  • Reyes, J., Iriarte, Y.A., A new family of modified slash distributions with applications, Mathematics, 11(13) (2023), 3018. https://doi.org/10.3390/math11133018
  • Proschan, F., Theoretical explanation of observed decreasing failure rate, Technometrics, 5(3) (1963), 375-383. https://doi.org/10.2307/1266340
Year 2024, , 641 - 663, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1398868

Abstract

References

  • Eugene, N., Lee, C., Famoye, F., Beta-normal distribution and its applications, Commun. Stat. Theory Methods, 31(4) (2002), 497-512. https://doi.org/10.1081/STA-120003130
  • Nadarajah, S., Kotz, S., The beta Gumbel distribution, Math. Probl. Eng., 2004(4) (2004), 323-332. https://doi.org/10.1155/S1024123X04403068
  • Nadarajah, S., Kotz, S., The beta exponential distribution, Reliab. Eng. Syst. Saf., 91(6) (2006), 689-697. https://doi.org/10.1016/j.ress.2005.05.008
  • Cordeiro, G. M., Gomes, A. E., da-Silva, C. Q., Ortega, E. M., The beta exponentiated Weibull distribution, J. Stat. Comput. Simul., 83(1) (2013), 114-138. https://doi.org/10.1080/00949655.2011.615838
  • Domma, F., Condino, F., The beta-Dagum distribution: definition and properties, Commun. Stat. Theory Methods, 42(22) (2013), 4070-4090. https://doi.org/10.1080/03610926.2011.647219
  • Rogers, W. H., Tukey, J. W., Understanding some long-tailed symmetrical distributions, Statistica Neerlandica, 26(3) (1972), 211-226. https://doi.org/10.1111/j.1467-9574.1972.tb00191.x
  • Reyes, J., Gomez, H.W., Bolfarine, H., Modified slash distribution, Statistics, 47(5) (2013), 929-941. https://doi.org/10.1080/02331888.2012.694441
  • Reyes, J., Barranco-Chamorro, I., Gomez, H.W., Generalized modified slash distribution with applications, Communications in Statistics-Theory and Methods, 49(8) (2020), 2025-2048. https://doi.org/10.1080/03610926.2019.1568484
  • Korkmaz, M.C., A new heavy-tailed distribution defined on the bounded interval: the logit slash distribution and its application, Journal of Applied Statistics, 47(12) (2017), 2097-2119. https://doi.org/10.1080/02664763.2019.1704701
  • Gui, W., Chen, P. H., Wu, H., An epsilon half normal slash distribution and its applications to nonnegative measurements, (2013). http://dx.doi.org/10.4236/ojop.2013.21001
  • del Castillo, J.M., The extended slash distribution of the sum of two independent logistic random variables, Communications in Statistics-Theory and Methods, 51(23) (2022), 8110-8129. https://doi.org/10.1080/03610926.2021.1888123
  • Reyes, J., Vilca, F., Gallardo, D.I., Gomez, H.W., Modified slash Birnbaum-Saunders distribution, Hacettepe Journal of Mathematics and Statistics, 46(5) (2017), 969-984. 10.15672/HJMS.201611215603
  • Gomez, Y.M., Firinguetti-Limone, L., Gallardo, D.I., Gomez, H.W., An extension of the Akash distribution: properties, inference and application, Mathematics, 12(1) (2023), 31. https://doi.org/10.3390/math12010031
  • Wang, J., Genton, M. G., The multivariate skew-slash distribution, J. Stat. Plan. Inference, 136(1) (2006), 209-220. https://doi.org/10.1016/j.jspi.2004.06.023
  • Punathumparambath, B., The multivariate asymmetric slash Laplace distribution and its applications, Statistica, 72(2) (2012), 235-249. https://doi.org/10.6092/issn.1973-2201/3645
  • Arslan, O., An alternative multivariate skew-slash distribution, Statistics & Probability Letters, 78(16) (2008),2756-2761. https://doi.org/10.1016/j.spl.2008.03.017
  • Genç A. İ., A generalization of the univariate slash by a scale-mixtured exponential power distribution, Communications in Statistics—Simulation and Computation, 36(5) (2007), 937-947. https://doi.org/10.1080/03610910701539161
  • Punathumparambath, B., A new family of skewed slash distributions generated by the normal kernel, Statistica, 71(3) (2011), 345-353. https://doi.org/10.6092/issn.1973-2201/3618
  • Punathumparambath, B., A new familiy of skewed slash distributions generated by the Cauchy Kernel, Communications in Statistics-Theory and Methods, 42(13) (2013), 2351-2361. https://doi.org/10.1080/03610926.2011.599508
  • Mosteller, F., Tukey, J.W., Data Analysis and Regression. A Second Course in Statistics, Addison-Wesley Series in Behavioral Science: Quantitative Methods, 1977. https://ui.adsabs.harvard.edu/abs/1977dars.book.....M/abstract
  • Kafadar, K., A biweight approach to the one-sample problem,Journal of the American Statistical Association, 77(378) (1982), 416-424. https://doi.org/10.2307/2287262
  • Jones, M. C., On univariate slash distributions, continuous and discrete, Annals of the Institute of Statistical Mathematics, 72(3) (2020), 645-657. https://doi.org/10.1007/s10463-019-00708-4
  • Reyes, J., Iriarte, Y.A., A new family of modified slash distributions with applications, Mathematics, 11(13) (2023), 3018. https://doi.org/10.3390/math11133018
  • Proschan, F., Theoretical explanation of observed decreasing failure rate, Technometrics, 5(3) (1963), 375-383. https://doi.org/10.2307/1266340
There are 24 citations in total.

Details

Primary Language English
Subjects Computational Statistics
Journal Section Research Articles
Authors

Sahana Bhattacharjee 0000-0002-5200-9379

Nandita Borah 0009-0004-2646-8362

Publication Date September 27, 2024
Submission Date December 1, 2023
Acceptance Date May 2, 2024
Published in Issue Year 2024

Cite

APA Bhattacharjee, S., & Borah, N. (2024). Beta generated slash distribution: derivation, properties and application to lifetime data. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(3), 641-663. https://doi.org/10.31801/cfsuasmas.1398868
AMA Bhattacharjee S, Borah N. Beta generated slash distribution: derivation, properties and application to lifetime data. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2024;73(3):641-663. doi:10.31801/cfsuasmas.1398868
Chicago Bhattacharjee, Sahana, and Nandita Borah. “Beta Generated Slash Distribution: Derivation, Properties and Application to Lifetime Data”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 3 (September 2024): 641-63. https://doi.org/10.31801/cfsuasmas.1398868.
EndNote Bhattacharjee S, Borah N (September 1, 2024) Beta generated slash distribution: derivation, properties and application to lifetime data. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 3 641–663.
IEEE S. Bhattacharjee and N. Borah, “Beta generated slash distribution: derivation, properties and application to lifetime data”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 3, pp. 641–663, 2024, doi: 10.31801/cfsuasmas.1398868.
ISNAD Bhattacharjee, Sahana - Borah, Nandita. “Beta Generated Slash Distribution: Derivation, Properties and Application to Lifetime Data”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/3 (September 2024), 641-663. https://doi.org/10.31801/cfsuasmas.1398868.
JAMA Bhattacharjee S, Borah N. Beta generated slash distribution: derivation, properties and application to lifetime data. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:641–663.
MLA Bhattacharjee, Sahana and Nandita Borah. “Beta Generated Slash Distribution: Derivation, Properties and Application to Lifetime Data”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 3, 2024, pp. 641-63, doi:10.31801/cfsuasmas.1398868.
Vancouver Bhattacharjee S, Borah N. Beta generated slash distribution: derivation, properties and application to lifetime data. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(3):641-63.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.