Research Article
BibTex RIS Cite
Year 2024, , 517 - 528, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1406328

Abstract

References

  • Aydin, F. T., Dual complex k-Fibonacci numbers, Chaos Solitons Fractals, 115 (2018), 1-6. https://doi.org/10.1016/j.chaos.2018.08.015
  • Bilgici, G., Dasdemir, A., Some unrestricted Fibonacci and Lucas hyper-complex numbers, Acta et Commentationes Universitatis Tartuensis de Mathematica, 24(1) (2020). https://orcid.org/0000-0001-8352-2020
  • Bilgici, G., Catarino, P., Unrestricted Pell and Pell-lucas quaternions, International Journal of Mathematics and Systems Science, 1 (2018). https://doi.org/10.24294/ijmss.v1i3.816
  • Cihan, A., Azak, A. Z., Gungor, M. A., Tosun, M., A study on dual hyperbolic Fibonacci and Lucas numbers, An. St. Univ. Ovidius Constanta, 27(1) (2019), 35-48. https://doi.org/10.2478/auom-2019-0002
  • Cockle, J., On a new imaginary in algebra, Philosophical magazine, London-Dublin- Edinburgh, 3(34) (1849), 37-47. https://doi.org/10.1080/14786444908646169
  • Cohen, A., Shoham, M., Principle of transference-An extension to hyperdual numbers, Mechanism and Machine Theory, 125 (2018), 101-110. https://doi.org/10.1016/j.mechmachtheory.2017.12.007
  • Dasdemir, A., Bilgici, G., Unrestricted Fibonacci and Lucas quaternions, Fundamental Journal of Mathematics and Applications, 4(1) (2021), 1-9. https://doi.org/10.33401/fujma.752758
  • Dasdemir, A., Bilgici, G., Gaussian Mersenne numbers and generalized Mersenne quaternions, Notes on Number Theory and Discrete Mathematics, 25(3) (2019), 87-96. https://doi.org/10.7546/nntdm.2019.25.3.87-96
  • Fike, J. A., Numerically exact derivative calculations using hyper-dual numbers, 3rd Annual Student Joint Workshop in Simulation-Based 26 Engineering and Design, 2009.
  • Gungor, M. A., Azak, A. Z., Investigation of dual-complex Fibonacci, dual-complex Lucas numbers and their properties, Adv. Appl. Clifford Algebras, 27 (2017), 3083-3096. https://doi.org/10.1007/s00006-017-0813-z
  • Gurses, N., Senturk, G. Y., Yuce, S., A study on dual-generalized complex and hyperbolic-generalized complex numbers, GU J. Sci., 34(1) (2021), 180-194. https://doi.org/10.35378/gujs.653906
  • Gurses, N., Senturk, G. Y., Yuce, S., A comprehensive survey of dual-generalized complex Fibonacci and Lucas numbers, Sigma J. Eng. Nat. Sci., 40(1) (2022), 179-187. https://doi.org/10.14744/sigma.2022.00014
  • Halici, S., Karatas, A., On a generalization for quaternion sequences, Chaos, Solitons & Fractals, 98 (2017), 178-182. https://doi.org/10.48550/arXiv.1611.07660
  • Horadam, A. F., Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Mon., 70 (1963), 289-291. https://doi.org/10.2307/2313129
  • Horadam, A. F., Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3(3) (1965), 161-176.
  • Kilic, E., Tan, E., More general identities involving the terms of $\{W_{n}(a, b; p, q)\}$, Ars Combinatoria, 93 (2009), 459-461.
  • Majernik, V., Multicompenent number systems, Acta Phys. Pol., A 90 (1996), 491-498.
  • Messelmi, F., Dual-complex numbers and their holomorphic functions, https://hal.archivesouvertes.fr/hal-01114178. Accessed 9 May 2015.
  • Senturk, T. D., Dasdemir, A., Bilgici, G., Unal, Z., On unrestricted Horadam generalized quaternions, Utilitas Mathematica, 110 (2019), 89-98.
  • Tan, E., Some properties of the bi-periodic Horadam sequences, Notes On Number Theory and Discrete Mathematics, 23(4) (2017), 56-65.
  • Tan, E., Ait-Amrane, N. R., Gok, I., On hyper-dual Horadam quaternions, Miskolc Mathematical Notes, 22(2) (2021), 903-913. http://doi.org/10.18514/MMN.2021.3747
  • Tan, E., Leung, H. H., Some results on Horadam quaternions, Chaos, Solitons and Fractals, 138 (2020), 109961. https://doi.org/10.1016/j.chaos.2020.109961
  • Tan, E., Öcal, U., On a generalization of dual-generalized complex Fibonacci quaternions, Notes on Number Theory and Discrete Mathematics, 4 (2023), 635-646. https://doi.org/10.7546/nntdm.2023.29.4.635-646

On unrestricted dual-generalized complex Horadam numbers

Year 2024, , 517 - 528, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1406328

Abstract

This research introduces a novel category of dual-generalized complex numbers, with components represented by unrestricted Horadam numbers. We present various recurrence relations, summation formulas, the Binet formula, and the generating function associated with these numbers. Additionally, a comprehensive bilinear index-reduction formula is derived, which encompasses Vajda’s, Catalan’s, Cassini’s, D’Ocagne’s, and Halton’s identities as specific cases.

References

  • Aydin, F. T., Dual complex k-Fibonacci numbers, Chaos Solitons Fractals, 115 (2018), 1-6. https://doi.org/10.1016/j.chaos.2018.08.015
  • Bilgici, G., Dasdemir, A., Some unrestricted Fibonacci and Lucas hyper-complex numbers, Acta et Commentationes Universitatis Tartuensis de Mathematica, 24(1) (2020). https://orcid.org/0000-0001-8352-2020
  • Bilgici, G., Catarino, P., Unrestricted Pell and Pell-lucas quaternions, International Journal of Mathematics and Systems Science, 1 (2018). https://doi.org/10.24294/ijmss.v1i3.816
  • Cihan, A., Azak, A. Z., Gungor, M. A., Tosun, M., A study on dual hyperbolic Fibonacci and Lucas numbers, An. St. Univ. Ovidius Constanta, 27(1) (2019), 35-48. https://doi.org/10.2478/auom-2019-0002
  • Cockle, J., On a new imaginary in algebra, Philosophical magazine, London-Dublin- Edinburgh, 3(34) (1849), 37-47. https://doi.org/10.1080/14786444908646169
  • Cohen, A., Shoham, M., Principle of transference-An extension to hyperdual numbers, Mechanism and Machine Theory, 125 (2018), 101-110. https://doi.org/10.1016/j.mechmachtheory.2017.12.007
  • Dasdemir, A., Bilgici, G., Unrestricted Fibonacci and Lucas quaternions, Fundamental Journal of Mathematics and Applications, 4(1) (2021), 1-9. https://doi.org/10.33401/fujma.752758
  • Dasdemir, A., Bilgici, G., Gaussian Mersenne numbers and generalized Mersenne quaternions, Notes on Number Theory and Discrete Mathematics, 25(3) (2019), 87-96. https://doi.org/10.7546/nntdm.2019.25.3.87-96
  • Fike, J. A., Numerically exact derivative calculations using hyper-dual numbers, 3rd Annual Student Joint Workshop in Simulation-Based 26 Engineering and Design, 2009.
  • Gungor, M. A., Azak, A. Z., Investigation of dual-complex Fibonacci, dual-complex Lucas numbers and their properties, Adv. Appl. Clifford Algebras, 27 (2017), 3083-3096. https://doi.org/10.1007/s00006-017-0813-z
  • Gurses, N., Senturk, G. Y., Yuce, S., A study on dual-generalized complex and hyperbolic-generalized complex numbers, GU J. Sci., 34(1) (2021), 180-194. https://doi.org/10.35378/gujs.653906
  • Gurses, N., Senturk, G. Y., Yuce, S., A comprehensive survey of dual-generalized complex Fibonacci and Lucas numbers, Sigma J. Eng. Nat. Sci., 40(1) (2022), 179-187. https://doi.org/10.14744/sigma.2022.00014
  • Halici, S., Karatas, A., On a generalization for quaternion sequences, Chaos, Solitons & Fractals, 98 (2017), 178-182. https://doi.org/10.48550/arXiv.1611.07660
  • Horadam, A. F., Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Mon., 70 (1963), 289-291. https://doi.org/10.2307/2313129
  • Horadam, A. F., Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3(3) (1965), 161-176.
  • Kilic, E., Tan, E., More general identities involving the terms of $\{W_{n}(a, b; p, q)\}$, Ars Combinatoria, 93 (2009), 459-461.
  • Majernik, V., Multicompenent number systems, Acta Phys. Pol., A 90 (1996), 491-498.
  • Messelmi, F., Dual-complex numbers and their holomorphic functions, https://hal.archivesouvertes.fr/hal-01114178. Accessed 9 May 2015.
  • Senturk, T. D., Dasdemir, A., Bilgici, G., Unal, Z., On unrestricted Horadam generalized quaternions, Utilitas Mathematica, 110 (2019), 89-98.
  • Tan, E., Some properties of the bi-periodic Horadam sequences, Notes On Number Theory and Discrete Mathematics, 23(4) (2017), 56-65.
  • Tan, E., Ait-Amrane, N. R., Gok, I., On hyper-dual Horadam quaternions, Miskolc Mathematical Notes, 22(2) (2021), 903-913. http://doi.org/10.18514/MMN.2021.3747
  • Tan, E., Leung, H. H., Some results on Horadam quaternions, Chaos, Solitons and Fractals, 138 (2020), 109961. https://doi.org/10.1016/j.chaos.2020.109961
  • Tan, E., Öcal, U., On a generalization of dual-generalized complex Fibonacci quaternions, Notes on Number Theory and Discrete Mathematics, 4 (2023), 635-646. https://doi.org/10.7546/nntdm.2023.29.4.635-646
There are 23 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Articles
Authors

Nacima Rosa Ait-amrane 0000-0002-0241-996X

Elif Tan 0000-0002-8381-8750

Publication Date June 21, 2024
Submission Date December 18, 2023
Acceptance Date February 13, 2024
Published in Issue Year 2024

Cite

APA Ait-amrane, N. R., & Tan, E. (2024). On unrestricted dual-generalized complex Horadam numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(2), 517-528. https://doi.org/10.31801/cfsuasmas.1406328
AMA Ait-amrane NR, Tan E. On unrestricted dual-generalized complex Horadam numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2024;73(2):517-528. doi:10.31801/cfsuasmas.1406328
Chicago Ait-amrane, Nacima Rosa, and Elif Tan. “On Unrestricted Dual-Generalized Complex Horadam Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 2 (June 2024): 517-28. https://doi.org/10.31801/cfsuasmas.1406328.
EndNote Ait-amrane NR, Tan E (June 1, 2024) On unrestricted dual-generalized complex Horadam numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 2 517–528.
IEEE N. R. Ait-amrane and E. Tan, “On unrestricted dual-generalized complex Horadam numbers”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 2, pp. 517–528, 2024, doi: 10.31801/cfsuasmas.1406328.
ISNAD Ait-amrane, Nacima Rosa - Tan, Elif. “On Unrestricted Dual-Generalized Complex Horadam Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/2 (June 2024), 517-528. https://doi.org/10.31801/cfsuasmas.1406328.
JAMA Ait-amrane NR, Tan E. On unrestricted dual-generalized complex Horadam numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:517–528.
MLA Ait-amrane, Nacima Rosa and Elif Tan. “On Unrestricted Dual-Generalized Complex Horadam Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 2, 2024, pp. 517-28, doi:10.31801/cfsuasmas.1406328.
Vancouver Ait-amrane NR, Tan E. On unrestricted dual-generalized complex Horadam numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(2):517-28.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.