Notes on the geometry of cotangent bundle and unit cotangent sphere bundle
Year 2024,
, 845 - 859, 27.09.2024
Bouazza Kacımı
,
Fatima Zohra Kadı
,
Mustafa Özkan
Abstract
Let $(\mathtt{N},\mathfrak{g})$ be a Riemannian manifold, by using the musical isomorphisms ♪ and $\natural$ induced by $\mathfrak{g}$, we built a bridge between the geometry of the tangent bundle $\mathtt{TN}$ (resp. the unit tangent sphere bundle $\mathtt{T}_{1}\mathtt{N}$) equipped with the Sasaki metric $\mathfrak{g}_{S}$ (resp. the induced Sasaki metric $\bar{\mathfrak{g}}_{S}$) and that of the cotangent bundle $\mathtt{T}^{\ast}\mathtt{N}$ (resp. the unit cotangent sphere bundle $\mathtt{T}_{1}^{\ast}\mathtt{N}$) endowed with the Sasaki metric $\mathfrak{g}_{\widetilde{S}}$ (resp. the induced Sasaki metric $\tilde{\mathfrak{g}}_{\widetilde{S}}$). Moreover, we prove that $\mathtt{T}_{1}^{\ast}\mathtt{N}$ carries a contact metric structure and study some of its proprieties.
References
- Akbulut, S., Özdemir, M., Salimov, A. A., Diagonal lift in the cotangent bundle and its applications, Turk. J. Math., 25(4) (2001), 491-502.
- Blair, D. E., When is the tangent sphere bundle locally symmetric?, Geometry and Topology, World Scientific, March (1989), 15-30. https://doi.org/10.1142/9789814434225 0002
- Boeckx, E., Vanhecke, L., Characteristic reflections on unit tangent sphere bundles, Houst. J. Math., 23 (1997), 427-448.
- Boeckx, E., Vanhecke, L., Geometry of Riemannian manifolds and their unit tangent sphere bundles, Publ. Math. Debrecen, 57(3-4) (2000), 509-533. https://doi.org/10.5486/PMD.2000.2349
- Calvaruso, G., Contact metric geometry of the unit tangent sphere bundle, complex, contact and symmetric manifolds, in: Complex, Contact and Symmetric Manifolds (eds. O. Kowalski, E. Musso and D. Perrone), Progress in Mathematics, 234 (2005), 41-57. https://doi.org/10.1007/b138831
- Carpenter, P., Gray, A., Willmore, T. J., The curvature of einstein symmetric spaces, Q. J. Math. Oxford, 33(1) (1982), 45-64. https://doi.org/10.1093/qmath/33.1.45
- Dombrowski, P., On the geometry of tangent bundle, J. Reine Angew. Math., 210 (1962), 73-88.
- Dragomir, S., Perrone, D., Harmonic Vector Fields: Variational Principles and Differential Geometry, Elsevier, Amsterdam, 2011.
- Gudmundsson, S., Kappos, E., On the geometry of tangent bundles, Expo. Math., 20 (2002), 1-41. https://doi.org/10.1016/S0723-0869(02)80027-5
- Kadi, F. Z., Kacimi, B., Özkan, M., Some results on harmonic metrics, Mediterr. J. Math., 20 (2023), 111. https://doi.org/10.1007/s00009-023-02320-6
- Kowalski, O., Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math., 250 (1971), 124-129.
- Musso, E., Tricerri, F., Riemannian metrics on tangent bundles, Ann. Mat. Pura. Appl., 150(4) (1988), 1-19. https://doi.org/10.1007/BF01761461
- Nikolayevsky, Y., Park, J. H., H-contact unit tangent sphere bundles of Riemannian manifolds, Diff. Geom. Appl., 49 (2016), 301-311. https://doi.org/10.1016/j.difgeo.2016.09.002
- Perrone, D., Contact metric manifolds whose characteristic vector field is a harmonic vector field, Differ. Geom. Appl., 20 (2004), 367-378. https://doi.org/10.1016/j.difgeo.2003.12.007
- Salimov, A. A., Agca, F., Some properties of Sasakian metrics in cotangent bundles, Mediterr. J. Math., 8 (2011), 243-255. https://doi.org/10.1007/s00009-010-0080-x
- Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J., 10 (1958), 338-354. https://doi.org/10.2748/tmj/1178244668
- Tashiro, Y., On contact structures on tangent sphere bundles, Tohoku Math. J., 21 (1969), 117-143. https://doi.org/10.2748/tmj/1178243040
- Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Dekker, New York, 1973.
Year 2024,
, 845 - 859, 27.09.2024
Bouazza Kacımı
,
Fatima Zohra Kadı
,
Mustafa Özkan
References
- Akbulut, S., Özdemir, M., Salimov, A. A., Diagonal lift in the cotangent bundle and its applications, Turk. J. Math., 25(4) (2001), 491-502.
- Blair, D. E., When is the tangent sphere bundle locally symmetric?, Geometry and Topology, World Scientific, March (1989), 15-30. https://doi.org/10.1142/9789814434225 0002
- Boeckx, E., Vanhecke, L., Characteristic reflections on unit tangent sphere bundles, Houst. J. Math., 23 (1997), 427-448.
- Boeckx, E., Vanhecke, L., Geometry of Riemannian manifolds and their unit tangent sphere bundles, Publ. Math. Debrecen, 57(3-4) (2000), 509-533. https://doi.org/10.5486/PMD.2000.2349
- Calvaruso, G., Contact metric geometry of the unit tangent sphere bundle, complex, contact and symmetric manifolds, in: Complex, Contact and Symmetric Manifolds (eds. O. Kowalski, E. Musso and D. Perrone), Progress in Mathematics, 234 (2005), 41-57. https://doi.org/10.1007/b138831
- Carpenter, P., Gray, A., Willmore, T. J., The curvature of einstein symmetric spaces, Q. J. Math. Oxford, 33(1) (1982), 45-64. https://doi.org/10.1093/qmath/33.1.45
- Dombrowski, P., On the geometry of tangent bundle, J. Reine Angew. Math., 210 (1962), 73-88.
- Dragomir, S., Perrone, D., Harmonic Vector Fields: Variational Principles and Differential Geometry, Elsevier, Amsterdam, 2011.
- Gudmundsson, S., Kappos, E., On the geometry of tangent bundles, Expo. Math., 20 (2002), 1-41. https://doi.org/10.1016/S0723-0869(02)80027-5
- Kadi, F. Z., Kacimi, B., Özkan, M., Some results on harmonic metrics, Mediterr. J. Math., 20 (2023), 111. https://doi.org/10.1007/s00009-023-02320-6
- Kowalski, O., Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math., 250 (1971), 124-129.
- Musso, E., Tricerri, F., Riemannian metrics on tangent bundles, Ann. Mat. Pura. Appl., 150(4) (1988), 1-19. https://doi.org/10.1007/BF01761461
- Nikolayevsky, Y., Park, J. H., H-contact unit tangent sphere bundles of Riemannian manifolds, Diff. Geom. Appl., 49 (2016), 301-311. https://doi.org/10.1016/j.difgeo.2016.09.002
- Perrone, D., Contact metric manifolds whose characteristic vector field is a harmonic vector field, Differ. Geom. Appl., 20 (2004), 367-378. https://doi.org/10.1016/j.difgeo.2003.12.007
- Salimov, A. A., Agca, F., Some properties of Sasakian metrics in cotangent bundles, Mediterr. J. Math., 8 (2011), 243-255. https://doi.org/10.1007/s00009-010-0080-x
- Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J., 10 (1958), 338-354. https://doi.org/10.2748/tmj/1178244668
- Tashiro, Y., On contact structures on tangent sphere bundles, Tohoku Math. J., 21 (1969), 117-143. https://doi.org/10.2748/tmj/1178243040
- Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Dekker, New York, 1973.