Research Article
BibTex RIS Cite

Mathematical analysis and numerical simulations for a nonlinear Klein Gordon equation in an exterior domain

Year 2024, , 833 - 844, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1434079

Abstract

In this study, the finite propogation speed properties investigated for a two dimensional exterior problem defined by nonlinear Klein-Gordon equation. Under some assumptions on the initial data and the nonlinearity, the solution is shown to have a finite propogation speed. Furthermore, it is demonstrated that the problem has a unique solution, and accurate numerical solutions have been produced by the use of the dual reciprocity boundary element approach with linear radial basis functions.

References

  • Segel, L. A., Mathematics Applied to Continuum Mechanics, Macmillan Publication, New York, 1977.
  • Whitham, G. B., Linear and Nonlinear Waves, Wiley Interscience Publication, New York, 1974.
  • Axelsson, O., Finite Difference Methods, Encyclopedia of Computational Mechanics, Stein E., de Borst R., Hughes T., eds., Vol. 1, chap. 2, John Wiley & Sons. Ltd., West Sussex, 2004.
  • Evans, L. C., Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, United States of America, 1998.
  • Macias-Diaz, J. E., Medina-Guavera, M. G., Vargas-Rodriguez, H., Exact solutions of non-linear Klein-Gordon equation with non-constant coefficients through the trial equation method, J. Math. Chem., 59 (2021) 827-839. https://doi.org/10.1007/s10910-021-01220-y
  • Nakao, M., Energy decay for a nonlinear generalized Klein-Gordon equation in exterior domains with a nonlinear localized dissipative term, J. Math. Soc. Japan., 64(3), (2012) 851-883. https://doi.org/10.2969/jmsj/06430851
  • Mohamad, H., Energy asymptotics for the strongly damped Klein-Gordon equation, Partial Differ. Equ., 3(71) 2022, 1-12. https://doi.org/10.1007/s42985-022-00207-x
  • Datti, P. S., Nonlinear wave equations in exterior domains, Nonlinear Anal. Theory Methods Appl., 15(4), (1990) 312-331. https://doi.org/10.1016/0362-546X(90)90140-C
  • Taskesen, H., Global existence and nonexistence of solutions for a Klein-Gordon equation with exponential type nonlinear term, TWMS J. App. and Eng. Math., 10(3), (2020) 669-676.
  • Hörmander, L., Remarks on the Klein-Gordon equation, J. Equations aux Derivees Partielles, (1987), 1-9.
  • Malloug, M., Local energy decay for the damped Klein-Gordon equation in exterior domain, Appl. Anal., 96(2)(2017), 349-362. https://doi.org/10.1080/00036811.2015.1136821
  • Dehghan, M., Shokri, A., Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions, J. Comput. Appl. Math., 230 (2009), 400-410. https://doi.org/10.1016/j.cam.2008.12.011
  • Bülbül, B., Sezer, M., A new approach to numerical solution of nonlinear Klein-Gordon equation, Math. Probl. Eng., 2013(2013), 1-7. http://dx.doi.org/10.1155/2013/869749
  • Macias-Diaz, J. E., Puri, A., A numerical method for computing radially symmetric solutions of a dissipative nonlinear modified Klein Gordon equation, Numer. Methods Partial Differ. Equ., 21(5), (2005),998-1015. https://doi.org/10.1002/num.20094
  • Macias-Diaz, J. E., On the bifurcation of energy in media governed by (2+1)-dimensional modified Klein-Gordon equations, Appl. Math. Comput., 206, (2008), 221-235. https://doi.org/10.1016/j.amc.2008.09.013
  • Pekmen, B., Tezer-Sezgin, M., Differential quadrature solution of nonlinear Klein-Gordon and sine-Gordon equations, Comput. Phys. Commun., 183 (2012), 1702-1713. https://doi.org/10.1016/j.cpc.2012.03.010
  • Tai, Y., Zhou, Z., Jiang, Z., Numerical solution of coupled nonlinear Klein-Gordon equations on unbounded domains, Phys. Rev. E., 106(2) (2022), 025317-1-10. https://doi.org/10.1103/PhysRevE.106.025317
  • Givoli, D., Recent Advances in the DtN FE Method, Arch. Comput. Methods Eng., 6(2), 71-116, 1999. https://doi.org/10.1007/BF02736182
  • Meral, G., Tezer-Sezgin, M., DRBEM solution of exterior wave problem using FDM and LSM time integrations. Eng. Anal. Bound. Elem., 34 (2010) 574-580. https://doi.org/10.1016/j.enganabound.2010.01.006
  • Givoli, D., Patlashenko, I., Finite element solution of nonlinear time dependent exterior wave problems, Jour. of Comput. Phys., 143 (1998) 241-258. https://doi.org/10.1006/jcph.1998.9999
  • Brebbia, C. A., Dominguez, J., Boundary Elements an Introductory Course, 2nd edn. Comput. Mech. Publications, Southampton, Boston, 1992.
  • Senel, P., Comparison study on the numerical stability of dual reciprocity boundary element method for the MHD slip flow problem, Eng. Anal. Bound. Elem., 151(2023) 370-386. https://doi.org/10.1016/j.enganabound.2023.03.010
  • Meral, G., DRBEM-FDM solution of a chemotaxis–haptotaxis model for cancer invasion, J. Comput. Appl. Math., 354 (2019) 299-309. https://doi.org/10.1016/j.cam.2018.04.047
Year 2024, , 833 - 844, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1434079

Abstract

References

  • Segel, L. A., Mathematics Applied to Continuum Mechanics, Macmillan Publication, New York, 1977.
  • Whitham, G. B., Linear and Nonlinear Waves, Wiley Interscience Publication, New York, 1974.
  • Axelsson, O., Finite Difference Methods, Encyclopedia of Computational Mechanics, Stein E., de Borst R., Hughes T., eds., Vol. 1, chap. 2, John Wiley & Sons. Ltd., West Sussex, 2004.
  • Evans, L. C., Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, United States of America, 1998.
  • Macias-Diaz, J. E., Medina-Guavera, M. G., Vargas-Rodriguez, H., Exact solutions of non-linear Klein-Gordon equation with non-constant coefficients through the trial equation method, J. Math. Chem., 59 (2021) 827-839. https://doi.org/10.1007/s10910-021-01220-y
  • Nakao, M., Energy decay for a nonlinear generalized Klein-Gordon equation in exterior domains with a nonlinear localized dissipative term, J. Math. Soc. Japan., 64(3), (2012) 851-883. https://doi.org/10.2969/jmsj/06430851
  • Mohamad, H., Energy asymptotics for the strongly damped Klein-Gordon equation, Partial Differ. Equ., 3(71) 2022, 1-12. https://doi.org/10.1007/s42985-022-00207-x
  • Datti, P. S., Nonlinear wave equations in exterior domains, Nonlinear Anal. Theory Methods Appl., 15(4), (1990) 312-331. https://doi.org/10.1016/0362-546X(90)90140-C
  • Taskesen, H., Global existence and nonexistence of solutions for a Klein-Gordon equation with exponential type nonlinear term, TWMS J. App. and Eng. Math., 10(3), (2020) 669-676.
  • Hörmander, L., Remarks on the Klein-Gordon equation, J. Equations aux Derivees Partielles, (1987), 1-9.
  • Malloug, M., Local energy decay for the damped Klein-Gordon equation in exterior domain, Appl. Anal., 96(2)(2017), 349-362. https://doi.org/10.1080/00036811.2015.1136821
  • Dehghan, M., Shokri, A., Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions, J. Comput. Appl. Math., 230 (2009), 400-410. https://doi.org/10.1016/j.cam.2008.12.011
  • Bülbül, B., Sezer, M., A new approach to numerical solution of nonlinear Klein-Gordon equation, Math. Probl. Eng., 2013(2013), 1-7. http://dx.doi.org/10.1155/2013/869749
  • Macias-Diaz, J. E., Puri, A., A numerical method for computing radially symmetric solutions of a dissipative nonlinear modified Klein Gordon equation, Numer. Methods Partial Differ. Equ., 21(5), (2005),998-1015. https://doi.org/10.1002/num.20094
  • Macias-Diaz, J. E., On the bifurcation of energy in media governed by (2+1)-dimensional modified Klein-Gordon equations, Appl. Math. Comput., 206, (2008), 221-235. https://doi.org/10.1016/j.amc.2008.09.013
  • Pekmen, B., Tezer-Sezgin, M., Differential quadrature solution of nonlinear Klein-Gordon and sine-Gordon equations, Comput. Phys. Commun., 183 (2012), 1702-1713. https://doi.org/10.1016/j.cpc.2012.03.010
  • Tai, Y., Zhou, Z., Jiang, Z., Numerical solution of coupled nonlinear Klein-Gordon equations on unbounded domains, Phys. Rev. E., 106(2) (2022), 025317-1-10. https://doi.org/10.1103/PhysRevE.106.025317
  • Givoli, D., Recent Advances in the DtN FE Method, Arch. Comput. Methods Eng., 6(2), 71-116, 1999. https://doi.org/10.1007/BF02736182
  • Meral, G., Tezer-Sezgin, M., DRBEM solution of exterior wave problem using FDM and LSM time integrations. Eng. Anal. Bound. Elem., 34 (2010) 574-580. https://doi.org/10.1016/j.enganabound.2010.01.006
  • Givoli, D., Patlashenko, I., Finite element solution of nonlinear time dependent exterior wave problems, Jour. of Comput. Phys., 143 (1998) 241-258. https://doi.org/10.1006/jcph.1998.9999
  • Brebbia, C. A., Dominguez, J., Boundary Elements an Introductory Course, 2nd edn. Comput. Mech. Publications, Southampton, Boston, 1992.
  • Senel, P., Comparison study on the numerical stability of dual reciprocity boundary element method for the MHD slip flow problem, Eng. Anal. Bound. Elem., 151(2023) 370-386. https://doi.org/10.1016/j.enganabound.2023.03.010
  • Meral, G., DRBEM-FDM solution of a chemotaxis–haptotaxis model for cancer invasion, J. Comput. Appl. Math., 354 (2019) 299-309. https://doi.org/10.1016/j.cam.2018.04.047
There are 23 citations in total.

Details

Primary Language English
Subjects Numerical Analysis
Journal Section Research Articles
Authors

Gülnihal Meral 0000-0003-0072-0609

Publication Date September 27, 2024
Submission Date February 8, 2024
Acceptance Date May 10, 2024
Published in Issue Year 2024

Cite

APA Meral, G. (2024). Mathematical analysis and numerical simulations for a nonlinear Klein Gordon equation in an exterior domain. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(3), 833-844. https://doi.org/10.31801/cfsuasmas.1434079
AMA Meral G. Mathematical analysis and numerical simulations for a nonlinear Klein Gordon equation in an exterior domain. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2024;73(3):833-844. doi:10.31801/cfsuasmas.1434079
Chicago Meral, Gülnihal. “Mathematical Analysis and Numerical Simulations for a Nonlinear Klein Gordon Equation in an Exterior Domain”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 3 (September 2024): 833-44. https://doi.org/10.31801/cfsuasmas.1434079.
EndNote Meral G (September 1, 2024) Mathematical analysis and numerical simulations for a nonlinear Klein Gordon equation in an exterior domain. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 3 833–844.
IEEE G. Meral, “Mathematical analysis and numerical simulations for a nonlinear Klein Gordon equation in an exterior domain”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 3, pp. 833–844, 2024, doi: 10.31801/cfsuasmas.1434079.
ISNAD Meral, Gülnihal. “Mathematical Analysis and Numerical Simulations for a Nonlinear Klein Gordon Equation in an Exterior Domain”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/3 (September 2024), 833-844. https://doi.org/10.31801/cfsuasmas.1434079.
JAMA Meral G. Mathematical analysis and numerical simulations for a nonlinear Klein Gordon equation in an exterior domain. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:833–844.
MLA Meral, Gülnihal. “Mathematical Analysis and Numerical Simulations for a Nonlinear Klein Gordon Equation in an Exterior Domain”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 3, 2024, pp. 833-44, doi:10.31801/cfsuasmas.1434079.
Vancouver Meral G. Mathematical analysis and numerical simulations for a nonlinear Klein Gordon equation in an exterior domain. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(3):833-44.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.