Research Article
BibTex RIS Cite

Approximation properties of the univariate and bivariate Bernstein-Stancu operators of max-product kind

Year 2024, , 787 - 801, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1452069

Abstract

This paper presents the nonlinear maximum product type of univariate and bivariate Bernstein–Stancu operators and uses new definitions to investigate the approximation properties. The order of approximation obtained with the nonlinear maximum product type of operator sequences would be better than the degree of approximation of the known linear operator sequences.

References

  • Altomare, F., Campiti, M., Korovkin-Type Approximation Theory and Its Applications, Walter de Gruyter, Berlin, 1994.
  • Korovkin, P. P., Linear Operators and Approximation Theory, Hindustan Publ. Corp., India, 1960.
  • Stancu, D. D., Asupra unei generaliz˘ari a polinoamelor lui Bernstein, Studia Universitatis Babeş-Bolyai, 14(2) (1969), 31-45 (in Romanian).
  • Bede, B., Coroianu, L., Gal, S. G., Approximation and shape preserving properties of the Bernstein operator of max-product kind, Intern, J. Math. and Math. Sci., 26 pages (2009). doi:10.1155/2009/590589
  • Bede, B., Gal, S. G., Approximation by nonlinear Bernstein and Favard-Szasz-Mirakjan operators of max-product kind, Journal of Concrete and Applicable Mathematics, 8(2) (2010), 193-207.
  • Bede, B., Coroianu, L., Gal, S. G., Approximation by Max-Product Type Operators, Heidelberg, Springer, 2016.
  • Coroianu, L., Gal, S. G,. Approximation by nonlinear generalized sampling operators of max-product kind, Sampl. Theory Signal Image Process, 9 (2010), 59-75. https://doi.org/10.1007/BF03549524
  • Coroianu, L., Gal, S. G., Approximation by max-product sampling operators based on sinc-type kernels, Sampl. Theory Signal Image Process, 10 (2011), 211-230. https://doi.org/10.1007/BF03549542
  • Hildebrandt, T. H., Schoenberg, I. J., On linear functional operations and the moment problem, Ann. Math., 34(2) (1933), 317-328.
  • Butzer, P. L., On two-dimensional Bernstein polynomials, Can. J. Math., 5 (1953), 107-113.
  • Martinez, F. L., Some properties of two-dimensional Bernstein polynomials, Journal of approximation theory, 59(3) (1989), 300-306. https://doi.org/10.1016/0021-9045(89)90095-6
  • Kırcı Serenbay, S., Yavuz, H., Approximation Of Modified Bernstein-Stancu Operators Of Maximum-Product Type, presented at the İzdaş Kongre, Ankara, Turkey, 2021.
  • Acar, E., Kırcı Serenbay, S., Approximation by nonlinear q-Bernstein-Chlodowsky operators, TWMS J. App. and Eng. Math., 14(1) (2024), 42-51.
  • Acar, E., Özalp Guller, Ö., Kırcı Serenbay, S., Approximation by nonlinear Meyer-König and Zeller operators based on q-integers, International Journal of Mathematics and Computer in Engineering, 2(2) (2024), 71-82.
  • Acar, E., Kırcı Serenbay, S., Özalp Guller, Ö., Approximation by nonlinear Bernstein-Chlodowsky operators of Kantorovich type, Filomat, 37(14) (2023), 4621-4627. https://doi.org/10.2298/FIL2314621A
  • Özalp Guller, Ö., Acar, E., Kırcı Serenbay, S., Nonlinear bivariate Bernstein-Chlodowsky operators of maximum product type, Journal of Mathematics, (2022). https://doi.org/10.1155/2022/4742433
  • Acar, E., Holhoş, A., Kırcı Serenbay, S., Polynomial weighted approximation by Szasz-Mirakyan operators of max-product type, Kragujevac Journal of Mathematics, 49(3) (2022), 365-373. 10.46793/KgJMat2503.365A
  • Gairola, A. R., Singh, A., Rathour, L., Mishra, V. N., Improved rate of approximation by modification of Baskakov operator, Operators and Matrices, 16(4), (2022), 1097-1123. dx.doi.org/10.7153/oam-2022-16-72
  • Gairola, A. R., Maindola, S., Rathour, L., Mishra, L. N., Mishra, V. N., Better uniform approximation by new Bivariate Bernstein Operators, International Journal of Analysis and Applications, 20(60) (2022), 1-19. https://doi.org/10.28924/2291-8639-20-2022-60
  • Gairola, A. R., Bisht, N., Rathour, L., Mishra, L. N., Mishra, V. N., Order of approximation by a new univariate Kantorovich Type Operator, International Journal of Analysis and Applications, 21 (2023), 1-17. https://doi.org/10.28924/2291-8639-21-2023-106
  • Mishra, V. N., Khatri, K., Mishra, L. N., Deepmala, Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators, Journal of Inequalities and Applications, 586 (2013). https://doi.org/10.1186/1029-242X-2013-586
  • Yeşilnacar Binmar, A. K., Aproximation properties two biviariate maximum product type operators, Master Thesis, Harran University, Şanlıurfa, Türkiye, 2023.
Year 2024, , 787 - 801, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1452069

Abstract

References

  • Altomare, F., Campiti, M., Korovkin-Type Approximation Theory and Its Applications, Walter de Gruyter, Berlin, 1994.
  • Korovkin, P. P., Linear Operators and Approximation Theory, Hindustan Publ. Corp., India, 1960.
  • Stancu, D. D., Asupra unei generaliz˘ari a polinoamelor lui Bernstein, Studia Universitatis Babeş-Bolyai, 14(2) (1969), 31-45 (in Romanian).
  • Bede, B., Coroianu, L., Gal, S. G., Approximation and shape preserving properties of the Bernstein operator of max-product kind, Intern, J. Math. and Math. Sci., 26 pages (2009). doi:10.1155/2009/590589
  • Bede, B., Gal, S. G., Approximation by nonlinear Bernstein and Favard-Szasz-Mirakjan operators of max-product kind, Journal of Concrete and Applicable Mathematics, 8(2) (2010), 193-207.
  • Bede, B., Coroianu, L., Gal, S. G., Approximation by Max-Product Type Operators, Heidelberg, Springer, 2016.
  • Coroianu, L., Gal, S. G,. Approximation by nonlinear generalized sampling operators of max-product kind, Sampl. Theory Signal Image Process, 9 (2010), 59-75. https://doi.org/10.1007/BF03549524
  • Coroianu, L., Gal, S. G., Approximation by max-product sampling operators based on sinc-type kernels, Sampl. Theory Signal Image Process, 10 (2011), 211-230. https://doi.org/10.1007/BF03549542
  • Hildebrandt, T. H., Schoenberg, I. J., On linear functional operations and the moment problem, Ann. Math., 34(2) (1933), 317-328.
  • Butzer, P. L., On two-dimensional Bernstein polynomials, Can. J. Math., 5 (1953), 107-113.
  • Martinez, F. L., Some properties of two-dimensional Bernstein polynomials, Journal of approximation theory, 59(3) (1989), 300-306. https://doi.org/10.1016/0021-9045(89)90095-6
  • Kırcı Serenbay, S., Yavuz, H., Approximation Of Modified Bernstein-Stancu Operators Of Maximum-Product Type, presented at the İzdaş Kongre, Ankara, Turkey, 2021.
  • Acar, E., Kırcı Serenbay, S., Approximation by nonlinear q-Bernstein-Chlodowsky operators, TWMS J. App. and Eng. Math., 14(1) (2024), 42-51.
  • Acar, E., Özalp Guller, Ö., Kırcı Serenbay, S., Approximation by nonlinear Meyer-König and Zeller operators based on q-integers, International Journal of Mathematics and Computer in Engineering, 2(2) (2024), 71-82.
  • Acar, E., Kırcı Serenbay, S., Özalp Guller, Ö., Approximation by nonlinear Bernstein-Chlodowsky operators of Kantorovich type, Filomat, 37(14) (2023), 4621-4627. https://doi.org/10.2298/FIL2314621A
  • Özalp Guller, Ö., Acar, E., Kırcı Serenbay, S., Nonlinear bivariate Bernstein-Chlodowsky operators of maximum product type, Journal of Mathematics, (2022). https://doi.org/10.1155/2022/4742433
  • Acar, E., Holhoş, A., Kırcı Serenbay, S., Polynomial weighted approximation by Szasz-Mirakyan operators of max-product type, Kragujevac Journal of Mathematics, 49(3) (2022), 365-373. 10.46793/KgJMat2503.365A
  • Gairola, A. R., Singh, A., Rathour, L., Mishra, V. N., Improved rate of approximation by modification of Baskakov operator, Operators and Matrices, 16(4), (2022), 1097-1123. dx.doi.org/10.7153/oam-2022-16-72
  • Gairola, A. R., Maindola, S., Rathour, L., Mishra, L. N., Mishra, V. N., Better uniform approximation by new Bivariate Bernstein Operators, International Journal of Analysis and Applications, 20(60) (2022), 1-19. https://doi.org/10.28924/2291-8639-20-2022-60
  • Gairola, A. R., Bisht, N., Rathour, L., Mishra, L. N., Mishra, V. N., Order of approximation by a new univariate Kantorovich Type Operator, International Journal of Analysis and Applications, 21 (2023), 1-17. https://doi.org/10.28924/2291-8639-21-2023-106
  • Mishra, V. N., Khatri, K., Mishra, L. N., Deepmala, Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators, Journal of Inequalities and Applications, 586 (2013). https://doi.org/10.1186/1029-242X-2013-586
  • Yeşilnacar Binmar, A. K., Aproximation properties two biviariate maximum product type operators, Master Thesis, Harran University, Şanlıurfa, Türkiye, 2023.
There are 22 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Research Articles
Authors

Ayşe Kübra Yeşilnacar Binmar 0000-0001-7861-2742

Ecem Acar 0000-0002-2517-5849

Sevilay Kırcı Serenbay 0000-0001-5819-9997

Publication Date September 27, 2024
Submission Date March 15, 2024
Acceptance Date May 13, 2024
Published in Issue Year 2024

Cite

APA Yeşilnacar Binmar, A. K., Acar, E., & Kırcı Serenbay, S. (2024). Approximation properties of the univariate and bivariate Bernstein-Stancu operators of max-product kind. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(3), 787-801. https://doi.org/10.31801/cfsuasmas.1452069
AMA Yeşilnacar Binmar AK, Acar E, Kırcı Serenbay S. Approximation properties of the univariate and bivariate Bernstein-Stancu operators of max-product kind. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2024;73(3):787-801. doi:10.31801/cfsuasmas.1452069
Chicago Yeşilnacar Binmar, Ayşe Kübra, Ecem Acar, and Sevilay Kırcı Serenbay. “Approximation Properties of the Univariate and Bivariate Bernstein-Stancu Operators of Max-Product Kind”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 3 (September 2024): 787-801. https://doi.org/10.31801/cfsuasmas.1452069.
EndNote Yeşilnacar Binmar AK, Acar E, Kırcı Serenbay S (September 1, 2024) Approximation properties of the univariate and bivariate Bernstein-Stancu operators of max-product kind. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 3 787–801.
IEEE A. K. Yeşilnacar Binmar, E. Acar, and S. Kırcı Serenbay, “Approximation properties of the univariate and bivariate Bernstein-Stancu operators of max-product kind”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 3, pp. 787–801, 2024, doi: 10.31801/cfsuasmas.1452069.
ISNAD Yeşilnacar Binmar, Ayşe Kübra et al. “Approximation Properties of the Univariate and Bivariate Bernstein-Stancu Operators of Max-Product Kind”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/3 (September 2024), 787-801. https://doi.org/10.31801/cfsuasmas.1452069.
JAMA Yeşilnacar Binmar AK, Acar E, Kırcı Serenbay S. Approximation properties of the univariate and bivariate Bernstein-Stancu operators of max-product kind. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:787–801.
MLA Yeşilnacar Binmar, Ayşe Kübra et al. “Approximation Properties of the Univariate and Bivariate Bernstein-Stancu Operators of Max-Product Kind”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 3, 2024, pp. 787-01, doi:10.31801/cfsuasmas.1452069.
Vancouver Yeşilnacar Binmar AK, Acar E, Kırcı Serenbay S. Approximation properties of the univariate and bivariate Bernstein-Stancu operators of max-product kind. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(3):787-801.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.