Research Article
BibTex RIS Cite
Year 2024, , 630 - 640, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1455235

Abstract

References

  • Aral, A., On a new approach in the space of measurable functions, Constr. Math. Anal., 6(4) (2023), 237-248. https://doi.org/10.33205/cma.1381787
  • Aral, A., Acar, T., Kursun, S., Generalized Kantorovich forms of exponential sampling series, Anal. Math. Phys., 12(2) (2022), 1-19. https://doi.org/10.1007/s13324-022-00667-9
  • Aral, A., Gupta, V., On the q analogue of Stancu-Beta operators, Applied Mathematics Letters, 25(1) (2012), 67-71. https://doi.org/10.1016/j.aml.2011.07.009
  • Bardaro, C., Mantellini, I., Approximation properties for linear combinations of moment type operators, Comput. Math. Appl., 62(5) (2011), 2304–2313. https://doi.org/10.1016/j.camwa.2011.07.017
  • Bardaro, C., Mantellini, I., Asymptotic behaviour of Mellin–Fejer convolution operators, East J. Approx., 17(2) (2011), 181–201. https://hdl.handle.net/11391/487296
  • Bardaro, C., Mantellini, I., Boundedness properties of semi-discrete sampling operators in Mellin–Lebesgue spaces, Mathematical Foundations of Computing, 5(3) (2022), 219-229. https://doi.org/10.3934/mfc.2021031
  • Bardaro, C., Mantellini, I., On Mellin convolution operators: a direct approach to the asymptotic formulae, Integral Transf. Spec. Funct., 25(3) (2014), 182–195. https://doi.org/10.1080/10652469.2013.838755
  • Bardaro, C., Mantellini, I., On the iterates of Mellin–Fejer convolution operators, Acta Appl. Math., 121(1) (2012), 213–229. https://doi.org/10.1007/s10440-012-9704-4
  • Bardaro, C., Mantellini, I., Pointwise convergence theorems for nonlinear Mellin convolution operators, Int. J. Pure Appl. Math., 27(4) (2006), 431–447. https://api.semanticscholar.org/CorpusID:125122093
  • Bardaro, C., Mantellini, I., Schmeisser, G., Exponential sampling series: convergence in Mellin-Lebesgue spaces, Results Math., 74 (2019), 1-20. https://doi.org/10.1007/s00025-019-1044-5
  • Bardaro, C., Mantellini, I., Tittarelli, I., Convergence of semi-discrete exponential sampling operators in Mellin–Lebesgue spaces, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (2023), 1-15. https://doi.org/10.1007/s13398-022-01367-6
  • Bardaro, C., Musielak J., Vinti, G., Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, New York, Berlin, 2003.
  • Butzer, P. L., Jansche, S., A direct approach to the Mellin transform, J. Fourier Anal. Appl., 3(4) (1997), 325–376. https://doi.org/10.1007/BF02649101
  • Butzer, P. L., Jansche, S., The exponential sampling theorem of signal analysis, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 99–122. https://publications.rwthaachen.de/record/135935
  • Butzer, P. L., Nessel, R. J., Fourier Analysis and Approximation I, Academic Press, New York-London, 1971.
  • Gupta, V., Aral, A., Ozsarac, F., On semi-exponential Gauss-Weierstrass operators, Anal. Math. Phys., 12, 111 (2022). https://doi.org/10.1007/s13324-022-00723-4
  • Kolbe, W., Nessel, R. J., Saturation theory in connection with Mellin transform methods, SIAM J. Math Anal., 3 (1972), 246-262. https://doi.org/10.1137/0503024
  • Mamedov, R., The Mellin Transform and Approximation Theory, Elm, Baku, 1991.

On the Mellin-Gauss-Weierstrass operators in the Mellin-Lebesgue spaces

Year 2024, , 630 - 640, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1455235

Abstract

In this paper, we present the modulus of smoothness of a function $f∈X_{c}^{p}$, which the Mellin-Lebesgue space, and later we state some properties of it. In this way, the rate of convergence is gained. Moreover, we elucidate some pointwise convergence results for the Mellin-Gauss-Weierstrass operators. Especially, we acquire the pointwise convergence of them at any Lebesgue point of a function $f$.

References

  • Aral, A., On a new approach in the space of measurable functions, Constr. Math. Anal., 6(4) (2023), 237-248. https://doi.org/10.33205/cma.1381787
  • Aral, A., Acar, T., Kursun, S., Generalized Kantorovich forms of exponential sampling series, Anal. Math. Phys., 12(2) (2022), 1-19. https://doi.org/10.1007/s13324-022-00667-9
  • Aral, A., Gupta, V., On the q analogue of Stancu-Beta operators, Applied Mathematics Letters, 25(1) (2012), 67-71. https://doi.org/10.1016/j.aml.2011.07.009
  • Bardaro, C., Mantellini, I., Approximation properties for linear combinations of moment type operators, Comput. Math. Appl., 62(5) (2011), 2304–2313. https://doi.org/10.1016/j.camwa.2011.07.017
  • Bardaro, C., Mantellini, I., Asymptotic behaviour of Mellin–Fejer convolution operators, East J. Approx., 17(2) (2011), 181–201. https://hdl.handle.net/11391/487296
  • Bardaro, C., Mantellini, I., Boundedness properties of semi-discrete sampling operators in Mellin–Lebesgue spaces, Mathematical Foundations of Computing, 5(3) (2022), 219-229. https://doi.org/10.3934/mfc.2021031
  • Bardaro, C., Mantellini, I., On Mellin convolution operators: a direct approach to the asymptotic formulae, Integral Transf. Spec. Funct., 25(3) (2014), 182–195. https://doi.org/10.1080/10652469.2013.838755
  • Bardaro, C., Mantellini, I., On the iterates of Mellin–Fejer convolution operators, Acta Appl. Math., 121(1) (2012), 213–229. https://doi.org/10.1007/s10440-012-9704-4
  • Bardaro, C., Mantellini, I., Pointwise convergence theorems for nonlinear Mellin convolution operators, Int. J. Pure Appl. Math., 27(4) (2006), 431–447. https://api.semanticscholar.org/CorpusID:125122093
  • Bardaro, C., Mantellini, I., Schmeisser, G., Exponential sampling series: convergence in Mellin-Lebesgue spaces, Results Math., 74 (2019), 1-20. https://doi.org/10.1007/s00025-019-1044-5
  • Bardaro, C., Mantellini, I., Tittarelli, I., Convergence of semi-discrete exponential sampling operators in Mellin–Lebesgue spaces, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (2023), 1-15. https://doi.org/10.1007/s13398-022-01367-6
  • Bardaro, C., Musielak J., Vinti, G., Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, New York, Berlin, 2003.
  • Butzer, P. L., Jansche, S., A direct approach to the Mellin transform, J. Fourier Anal. Appl., 3(4) (1997), 325–376. https://doi.org/10.1007/BF02649101
  • Butzer, P. L., Jansche, S., The exponential sampling theorem of signal analysis, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 99–122. https://publications.rwthaachen.de/record/135935
  • Butzer, P. L., Nessel, R. J., Fourier Analysis and Approximation I, Academic Press, New York-London, 1971.
  • Gupta, V., Aral, A., Ozsarac, F., On semi-exponential Gauss-Weierstrass operators, Anal. Math. Phys., 12, 111 (2022). https://doi.org/10.1007/s13324-022-00723-4
  • Kolbe, W., Nessel, R. J., Saturation theory in connection with Mellin transform methods, SIAM J. Math Anal., 3 (1972), 246-262. https://doi.org/10.1137/0503024
  • Mamedov, R., The Mellin Transform and Approximation Theory, Elm, Baku, 1991.
There are 18 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Research Articles
Authors

Fırat Özsaraç 0000-0001-7170-9613

Publication Date September 27, 2024
Submission Date March 19, 2024
Acceptance Date April 5, 2024
Published in Issue Year 2024

Cite

APA Özsaraç, F. (2024). On the Mellin-Gauss-Weierstrass operators in the Mellin-Lebesgue spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(3), 630-640. https://doi.org/10.31801/cfsuasmas.1455235
AMA Özsaraç F. On the Mellin-Gauss-Weierstrass operators in the Mellin-Lebesgue spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2024;73(3):630-640. doi:10.31801/cfsuasmas.1455235
Chicago Özsaraç, Fırat. “On the Mellin-Gauss-Weierstrass Operators in the Mellin-Lebesgue Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 3 (September 2024): 630-40. https://doi.org/10.31801/cfsuasmas.1455235.
EndNote Özsaraç F (September 1, 2024) On the Mellin-Gauss-Weierstrass operators in the Mellin-Lebesgue spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 3 630–640.
IEEE F. Özsaraç, “On the Mellin-Gauss-Weierstrass operators in the Mellin-Lebesgue spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 3, pp. 630–640, 2024, doi: 10.31801/cfsuasmas.1455235.
ISNAD Özsaraç, Fırat. “On the Mellin-Gauss-Weierstrass Operators in the Mellin-Lebesgue Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/3 (September 2024), 630-640. https://doi.org/10.31801/cfsuasmas.1455235.
JAMA Özsaraç F. On the Mellin-Gauss-Weierstrass operators in the Mellin-Lebesgue spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:630–640.
MLA Özsaraç, Fırat. “On the Mellin-Gauss-Weierstrass Operators in the Mellin-Lebesgue Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 3, 2024, pp. 630-4, doi:10.31801/cfsuasmas.1455235.
Vancouver Özsaraç F. On the Mellin-Gauss-Weierstrass operators in the Mellin-Lebesgue spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(3):630-4.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.