Research Article
BibTex RIS Cite

Existence and uniqueness of a weak solution for singular weighted Robin problem involving p(.)-biharmonic operator

Year 2024, , 941 - 956, 30.12.2024
https://doi.org/10.31801/cfsuasmas.1468665

Abstract

The aim of this paper is to find the existence of solutions for the following class of singular fourth order equation involving the weighted $p(.)$-biharmonic operator:
\begin{equation*}
\left\{
\begin{array}{cc}
\Delta \left( a(x)\left\vert \Delta u\right\vert ^{p(x)-2}\Delta u\right)
=\lambda b(x)\left\vert u\right\vert ^{q(x)-2}u+V(x)\left\vert u\right\vert
^{-\gamma (x)}, x\in \Omega,~ \\

a(x)\left\vert \Delta u\right\vert ^{p(x)-2}\frac{\partial u}{\partial
\upsilon }+\beta (x)\left\vert u\right\vert ^{p(x)-2}u=0, x\in \partial\Omega,
\end{array}
\right.
\end{equation*}
where $%
%TCIMACRO{\U{3a9} }%
%BeginExpansion
\Omega
%EndExpansion
$ is a smooth bounded domain in $%
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
^{N}\left( N\geq 2\right) $. Using variational methods, we prove the existence at least one nontrivial weak solution of such a Robin problem in weighted variable exponent second order Sobolev spaces $W_{a}^{2,p(.)}\left(\Omega \right) $ under some appropriate conditions. Finally, we deduce some uniqueness results.

References

  • Alsaedi, R., Ali, K. Ben., Ghanmi, A., Existence results for singular p(x)-Laplacian equation, Adv. in Pure and Appl. Math., 3(13) (2022), 62-71. https://doi.org/10.21494/ISTE.OP.2022.0840
  • Allali, Z. E., Hamdani, M. K., Taarabti, S., Three solutions to a Neumann boundary value problem driven by p(x)-biharmonic operator, J. Elliptic Parabol Equ., 10(1) (2024), 195-209. https://doi.org/10.1007/s41808-023-00257-1
  • Aydın, I.,Weighted variable Sobolev spaces and capacity, J. Funct. Spaces Appl., 2012 (2012). https://doi.org/10.1155/2012/132690
  • Aydin, I., Unal, C., Existence and multiplicity of weak solutions for eigenvalue Robin problem with weighted p(.)-Laplacian,. Ric. Mat., 72 (2023), 511-528. https://doi.org/10.1007/s11587-021-00621-0
  • Aydin, I., Unal, C., Three solutions to a Steklov problem involving the weighted p(.)-Laplacian, Rocky Mountain J. Math., 51(1) (2021), 67-76. https://doi.org/10.1216/rmj.2021.51.67
  • Aydın, I., Almost all weak solutions of the weighted p(.)-biharmonic problem, J. Anal., 32 (2024), 171-190. https://doi.org/10.1007/s41478-023-00628-w
  • Ayoujil, A., El Amrouss, A. R., On the spectrum of a fourth order elliptic equation with variable exponent, Nonlinear Anal., 71(10) (2009), 4916-4926. https://doi.org/10.1016/j.na.2009.03.074
  • Ayoujil, A., El Amrouss, A. R., Continuous spectrum of a fourth order nonhomogeneous elliptic equation with variable exponent, Electron. J. Differential Equations, 2011(24) (2011), 1-12. http://ejde.math.txstate.edu
  • Bal, K., Garain, P., Mukherjee, T., On an anisotropic p-Laplace equation with variable singular exponent, Adv. Differential Equations, 26(11/12) (2021), 535-562. https://doi.org/10.57262/ade026-1112-535
  • Brezis, H., Analise functional Theorie Methodes et Applications, Masson Paris, 1992.
  • Canino, A., Sciunzi, B., Trombetta, A., Existence and uniqueness for p-Laplace equations involving singular nonlinearities, Nonlinear Differ. Equ. Appl., 23(8) (2016), 1-18. https://doi.org/10.1007/s00030-016-0361-6
  • Chung, N. T., Some remarks on a class of p(x)-Laplacian Robin eigenvalue problems, Mediterr. J. Math., 15(147) (2018), 1-14. https://doi.org/10.1007/s00009-018-1196-7
  • Chung, N. T., On a class of p(x)-Kirhhoff type problems with robin boundary conditions and indefinite weights, TWMS J. App. and Eng. Math., 10(2) (2020), 400-410. https://orcid.org/0000-0001-7345-620X.
  • Chung, N. T., Ho, K., On a p(·)-biharmonic problem of Kirchhoff type involving critical growth, App. Analy., 101(16) (2022), 5700-5726. https://doi.org/10.1080/00036811.2021.1903445
  • Deng, S. G., Eigenvalues of the p(x)-Laplacian Steklov problem, J. Math. Anal. Appl., 339(2) (2008), 925-937. https://doi.org/10.1016/j.jmaa.2007.07.028
  • Deng, S. G., Positive solutions for Robin problem involving the p(x)-Laplacian, J. Math. Anal. Appl., 360(2) (2009), 548-560. https://doi.org/10.1016/j.jmaa.2009.06.032
  • Edmunds, D. E., Rakosnik, J., Sobolev embeddings with variable exponent, Studia Math., 143(3) (2000), 267-293.
  • Fan, X., Zhao, D., On the Spaces Lp(x) (Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., 263(2) (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617
  • Fan, X. L., Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl., 312(2) (2005), 464-477. https://doi.org/10.1016/j.jmaa.2005.03.057
  • Ge, B., Zhou, Q., Wu, Y., Eigenvalues of the p(x)-biharmonic operator with indefinite weight, Z. Angew. Math. Phys., 66 (2015), 1007-1021. https://doi.org/10.1007/s00033-014-0465-y
  • Ge, B., Zhou, Q. M., Multiple solutions for a Robin-type differential inclusion problem involving the p(x)-Laplacian, Math. Methods Appl. Sci., 40(18) (2017), 6229-6238. https://doi.org/10.1002/mma.2760
  • Hamdani, M. K., Harrabi, A., Mtiri, F., Repovs, D. D., Existence and multiplicity results for a new p(x)-Kirchhoff problem, Nonlinear Anal., 190 (2020), 111598, 1-15. https://doi.org/10.1016/j.na.2019.111598
  • Hewitt, E., Stromberg, K., Real and Abstract Analysis, Springer-Verlag, 1965.
  • Kefi, K., On the Robin problem with indefinite weight in Sobolev spaces with variable exponents, Z. Anal. Anwend. , 37(1) (2018), 25-38. https://doi.org/10.4171/ZAA/1600
  • Kefi, K., Saoudi, K., On the existence of a weak solution for some singular p(x)-biharmonic equation with Navier boundary conditions, Adv. Nonlinear Anal., 8 (2019), 1171-1183. https://doi.org/10.1515/anona-2016-0260
  • Kefi, K., Al-Shomrani, M.M., Variational approach for a Robin problem involving non standard growth conditions, Mathematics, 10(7) (2022), 1127. https://doi.org/10.3390/math10071127
  • Kovacik, O., Rakosnik, J., On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czech. Math. J., 41(4) (1991), 592-618. http://dml.cz/dmlcz/102493
  • Kulak, O., Aydin, I., Unal, C., Existence of weak solutions for weighted Robin problem involving p(.)-biharmonic operator, Differ. Equ. Dyn. Syst., 2(4) (2024), 1159–1174. https://doi.org/10.1007/s12591-022-00619-6.
  • Kufner, A., John, O., Fucik, S., Function Spaces. Prague: Academia, 1977.
  • Liu, Q., Compact trace in weighted variable exponent Sobolev spaces $W^{1,p(x)}(Ω; ν_0, ν_1)$, J. Math. Anal. Appl., 348(2) (2008), 760-774. https://doi.org/10.1016/j.jmaa.2008.08.004
  • Liu, Q., Liu, D., Existence and multiplicity of solutions to a p(x)-Laplacian equation with nonlinear boundary condition on unbounded domain, Diff. Equa. Appl., 5(4) (2013), 595-611. https://doi.org/10.7153/dea-05-35
  • Mbarki, L., The Nehari manifold approach involving a singular p(x)-biharmonic problem with Navier boundary conditions, Acta Appl. Math., 182(3) (2022), https://doi.org/10.1007/s10440-022-00538-2.
  • Peral, I., Multiplicity of Solutions for the p-Laplacian, Lecture Notes at the Second School on Nonlinear Functional Analysis and Applications to Differential Equations at ICTP of Trieste, ICTP Lecture Notes, 1997, 114 pages.
  • Unal, C., Aydın, I., Compact embeddings of weighted variable exponent Sobolev spaces and existence of solutions for weighted p(.)-Laplacian, Complex Variables and Elliptic Equations, 66(10) (2021), 1755-1773. https://doi.org/10.1080/17476933.2020.1781831
Year 2024, , 941 - 956, 30.12.2024
https://doi.org/10.31801/cfsuasmas.1468665

Abstract

References

  • Alsaedi, R., Ali, K. Ben., Ghanmi, A., Existence results for singular p(x)-Laplacian equation, Adv. in Pure and Appl. Math., 3(13) (2022), 62-71. https://doi.org/10.21494/ISTE.OP.2022.0840
  • Allali, Z. E., Hamdani, M. K., Taarabti, S., Three solutions to a Neumann boundary value problem driven by p(x)-biharmonic operator, J. Elliptic Parabol Equ., 10(1) (2024), 195-209. https://doi.org/10.1007/s41808-023-00257-1
  • Aydın, I.,Weighted variable Sobolev spaces and capacity, J. Funct. Spaces Appl., 2012 (2012). https://doi.org/10.1155/2012/132690
  • Aydin, I., Unal, C., Existence and multiplicity of weak solutions for eigenvalue Robin problem with weighted p(.)-Laplacian,. Ric. Mat., 72 (2023), 511-528. https://doi.org/10.1007/s11587-021-00621-0
  • Aydin, I., Unal, C., Three solutions to a Steklov problem involving the weighted p(.)-Laplacian, Rocky Mountain J. Math., 51(1) (2021), 67-76. https://doi.org/10.1216/rmj.2021.51.67
  • Aydın, I., Almost all weak solutions of the weighted p(.)-biharmonic problem, J. Anal., 32 (2024), 171-190. https://doi.org/10.1007/s41478-023-00628-w
  • Ayoujil, A., El Amrouss, A. R., On the spectrum of a fourth order elliptic equation with variable exponent, Nonlinear Anal., 71(10) (2009), 4916-4926. https://doi.org/10.1016/j.na.2009.03.074
  • Ayoujil, A., El Amrouss, A. R., Continuous spectrum of a fourth order nonhomogeneous elliptic equation with variable exponent, Electron. J. Differential Equations, 2011(24) (2011), 1-12. http://ejde.math.txstate.edu
  • Bal, K., Garain, P., Mukherjee, T., On an anisotropic p-Laplace equation with variable singular exponent, Adv. Differential Equations, 26(11/12) (2021), 535-562. https://doi.org/10.57262/ade026-1112-535
  • Brezis, H., Analise functional Theorie Methodes et Applications, Masson Paris, 1992.
  • Canino, A., Sciunzi, B., Trombetta, A., Existence and uniqueness for p-Laplace equations involving singular nonlinearities, Nonlinear Differ. Equ. Appl., 23(8) (2016), 1-18. https://doi.org/10.1007/s00030-016-0361-6
  • Chung, N. T., Some remarks on a class of p(x)-Laplacian Robin eigenvalue problems, Mediterr. J. Math., 15(147) (2018), 1-14. https://doi.org/10.1007/s00009-018-1196-7
  • Chung, N. T., On a class of p(x)-Kirhhoff type problems with robin boundary conditions and indefinite weights, TWMS J. App. and Eng. Math., 10(2) (2020), 400-410. https://orcid.org/0000-0001-7345-620X.
  • Chung, N. T., Ho, K., On a p(·)-biharmonic problem of Kirchhoff type involving critical growth, App. Analy., 101(16) (2022), 5700-5726. https://doi.org/10.1080/00036811.2021.1903445
  • Deng, S. G., Eigenvalues of the p(x)-Laplacian Steklov problem, J. Math. Anal. Appl., 339(2) (2008), 925-937. https://doi.org/10.1016/j.jmaa.2007.07.028
  • Deng, S. G., Positive solutions for Robin problem involving the p(x)-Laplacian, J. Math. Anal. Appl., 360(2) (2009), 548-560. https://doi.org/10.1016/j.jmaa.2009.06.032
  • Edmunds, D. E., Rakosnik, J., Sobolev embeddings with variable exponent, Studia Math., 143(3) (2000), 267-293.
  • Fan, X., Zhao, D., On the Spaces Lp(x) (Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., 263(2) (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617
  • Fan, X. L., Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl., 312(2) (2005), 464-477. https://doi.org/10.1016/j.jmaa.2005.03.057
  • Ge, B., Zhou, Q., Wu, Y., Eigenvalues of the p(x)-biharmonic operator with indefinite weight, Z. Angew. Math. Phys., 66 (2015), 1007-1021. https://doi.org/10.1007/s00033-014-0465-y
  • Ge, B., Zhou, Q. M., Multiple solutions for a Robin-type differential inclusion problem involving the p(x)-Laplacian, Math. Methods Appl. Sci., 40(18) (2017), 6229-6238. https://doi.org/10.1002/mma.2760
  • Hamdani, M. K., Harrabi, A., Mtiri, F., Repovs, D. D., Existence and multiplicity results for a new p(x)-Kirchhoff problem, Nonlinear Anal., 190 (2020), 111598, 1-15. https://doi.org/10.1016/j.na.2019.111598
  • Hewitt, E., Stromberg, K., Real and Abstract Analysis, Springer-Verlag, 1965.
  • Kefi, K., On the Robin problem with indefinite weight in Sobolev spaces with variable exponents, Z. Anal. Anwend. , 37(1) (2018), 25-38. https://doi.org/10.4171/ZAA/1600
  • Kefi, K., Saoudi, K., On the existence of a weak solution for some singular p(x)-biharmonic equation with Navier boundary conditions, Adv. Nonlinear Anal., 8 (2019), 1171-1183. https://doi.org/10.1515/anona-2016-0260
  • Kefi, K., Al-Shomrani, M.M., Variational approach for a Robin problem involving non standard growth conditions, Mathematics, 10(7) (2022), 1127. https://doi.org/10.3390/math10071127
  • Kovacik, O., Rakosnik, J., On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czech. Math. J., 41(4) (1991), 592-618. http://dml.cz/dmlcz/102493
  • Kulak, O., Aydin, I., Unal, C., Existence of weak solutions for weighted Robin problem involving p(.)-biharmonic operator, Differ. Equ. Dyn. Syst., 2(4) (2024), 1159–1174. https://doi.org/10.1007/s12591-022-00619-6.
  • Kufner, A., John, O., Fucik, S., Function Spaces. Prague: Academia, 1977.
  • Liu, Q., Compact trace in weighted variable exponent Sobolev spaces $W^{1,p(x)}(Ω; ν_0, ν_1)$, J. Math. Anal. Appl., 348(2) (2008), 760-774. https://doi.org/10.1016/j.jmaa.2008.08.004
  • Liu, Q., Liu, D., Existence and multiplicity of solutions to a p(x)-Laplacian equation with nonlinear boundary condition on unbounded domain, Diff. Equa. Appl., 5(4) (2013), 595-611. https://doi.org/10.7153/dea-05-35
  • Mbarki, L., The Nehari manifold approach involving a singular p(x)-biharmonic problem with Navier boundary conditions, Acta Appl. Math., 182(3) (2022), https://doi.org/10.1007/s10440-022-00538-2.
  • Peral, I., Multiplicity of Solutions for the p-Laplacian, Lecture Notes at the Second School on Nonlinear Functional Analysis and Applications to Differential Equations at ICTP of Trieste, ICTP Lecture Notes, 1997, 114 pages.
  • Unal, C., Aydın, I., Compact embeddings of weighted variable exponent Sobolev spaces and existence of solutions for weighted p(.)-Laplacian, Complex Variables and Elliptic Equations, 66(10) (2021), 1755-1773. https://doi.org/10.1080/17476933.2020.1781831
There are 34 citations in total.

Details

Primary Language English
Subjects Calculus of Variations, Mathematical Aspects of Systems Theory and Control Theory
Journal Section Research Articles
Authors

İsmail Aydın 0000-0001-8371-3185

Publication Date December 30, 2024
Submission Date April 15, 2024
Acceptance Date July 4, 2024
Published in Issue Year 2024

Cite

APA Aydın, İ. (2024). Existence and uniqueness of a weak solution for singular weighted Robin problem involving p(.)-biharmonic operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(4), 941-956. https://doi.org/10.31801/cfsuasmas.1468665
AMA Aydın İ. Existence and uniqueness of a weak solution for singular weighted Robin problem involving p(.)-biharmonic operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2024;73(4):941-956. doi:10.31801/cfsuasmas.1468665
Chicago Aydın, İsmail. “Existence and Uniqueness of a Weak Solution for Singular Weighted Robin Problem Involving p(.)-Biharmonic Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 4 (December 2024): 941-56. https://doi.org/10.31801/cfsuasmas.1468665.
EndNote Aydın İ (December 1, 2024) Existence and uniqueness of a weak solution for singular weighted Robin problem involving p(.)-biharmonic operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 4 941–956.
IEEE İ. Aydın, “Existence and uniqueness of a weak solution for singular weighted Robin problem involving p(.)-biharmonic operator”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 4, pp. 941–956, 2024, doi: 10.31801/cfsuasmas.1468665.
ISNAD Aydın, İsmail. “Existence and Uniqueness of a Weak Solution for Singular Weighted Robin Problem Involving p(.)-Biharmonic Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/4 (December 2024), 941-956. https://doi.org/10.31801/cfsuasmas.1468665.
JAMA Aydın İ. Existence and uniqueness of a weak solution for singular weighted Robin problem involving p(.)-biharmonic operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:941–956.
MLA Aydın, İsmail. “Existence and Uniqueness of a Weak Solution for Singular Weighted Robin Problem Involving p(.)-Biharmonic Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 4, 2024, pp. 941-56, doi:10.31801/cfsuasmas.1468665.
Vancouver Aydın İ. Existence and uniqueness of a weak solution for singular weighted Robin problem involving p(.)-biharmonic operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(4):941-56.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.