Research Article
BibTex RIS Cite
Year 2024, , 1098 - 1113, 30.12.2024
https://doi.org/10.31801/cfsuasmas.1494749

Abstract

References

  • Alam, S., Rao, S., Davvaz, B., (m, n)-Semirings and a generalized fault- tolerance algebra of systems, J. Appl. Math., (2013), Art. ID 482391, 10 pp. https://doi.org/10.1155/2013/482391
  • Balakrishnan, R., Chelvam, T., $\alpha_{1}$, $\alpha_{2}$,-Near-rings, International Journal of Algebra, 4(2) (2010), 71–79.
  • Chaudhari, J. N., Nemade, H., Davvaz, B., On partitioning ideals of (m, n)-semirings, Asian European Journal of Mathematics, 15(8) (2022), 2250144 (13 pages). https://doi.org/10.1142/S1793557122501443
  • Clay, J., Near-rings: Geneses and Applications, Oxford, New York, 1992. https://doi.org/10.1093/oso/9780198533986.002.0001
  • Crombez, G., On (m, n)-rings, Abh. Math. Semin. Univ. Hambg., 37 (1972), 180–199. https://doi.org/10.1007/BF02999695
  • Crombez, G., Timm, J., On (n, m)-quotient rings, Abh. Math. Semin. Univ. Hambg., 37 (1972), 200–203. https://doi.org/10.1007/BF02999696
  • Davvaz, B., Leoreanu-Fotea, V., Vougiouklis, T., A survey on the theory of n-hypergroups, Mathematics, 11 (2023), 551. https://doi.org/10.3390/math11030551
  • Davvaz, B., Mohammadi, F., Different types of ideals and homomorphisms of (m, n)- semirings, TWMS J. Pure Appl. Math., 12(2) (2021), 209-222.
  • Dickson, L., Definitions of a group and a field by independent postulates, Trans. Amer. Math. Soc., 6 (1905), 198-204.
  • Dörnte, W., Untersuchungen uber einen verallgemeinerten Gruppenbegriff, Math. Z., 29 (1929), 1-19.
  • Dudek, W. A., Glazek, K., Around the Hosszu-Gluskin theorem for n-ary groups, Discret. Math., 308 (2008), 4861-4876. https://doi.org/10.1016/j.disc.2007.09.005
  • Post, E. L., Polyadic groups, Trans. Amer. Math. Soc., 48 (1940), 208-350.
  • Usan, J., Zizovic, M., Some remarks on (m, n)-rings, Filomat, 13 (1999), 53-57.
  • Vasantha Kandasamy, W. B., Smarandache near-rings, American Research Press Rehoboth, NM, 2002.

Ideal theory of $(m, n)$-near rings

Year 2024, , 1098 - 1113, 30.12.2024
https://doi.org/10.31801/cfsuasmas.1494749

Abstract

The aim of this research work is to define and characterize a new class of $n$-ary algebras that we call $(m,n)$-near rings. We investigate the notions of $i$-$R$-groups, $i$-$(m, n) $-near field, prime ideals, primary ideals and subtractive ideals of $(m,n)$-near rings. We describe the concept of homomorphisms between $ (m, n) $-near rings that preserve the $(m, n)$-near ring structure, and give some results in this respect.

References

  • Alam, S., Rao, S., Davvaz, B., (m, n)-Semirings and a generalized fault- tolerance algebra of systems, J. Appl. Math., (2013), Art. ID 482391, 10 pp. https://doi.org/10.1155/2013/482391
  • Balakrishnan, R., Chelvam, T., $\alpha_{1}$, $\alpha_{2}$,-Near-rings, International Journal of Algebra, 4(2) (2010), 71–79.
  • Chaudhari, J. N., Nemade, H., Davvaz, B., On partitioning ideals of (m, n)-semirings, Asian European Journal of Mathematics, 15(8) (2022), 2250144 (13 pages). https://doi.org/10.1142/S1793557122501443
  • Clay, J., Near-rings: Geneses and Applications, Oxford, New York, 1992. https://doi.org/10.1093/oso/9780198533986.002.0001
  • Crombez, G., On (m, n)-rings, Abh. Math. Semin. Univ. Hambg., 37 (1972), 180–199. https://doi.org/10.1007/BF02999695
  • Crombez, G., Timm, J., On (n, m)-quotient rings, Abh. Math. Semin. Univ. Hambg., 37 (1972), 200–203. https://doi.org/10.1007/BF02999696
  • Davvaz, B., Leoreanu-Fotea, V., Vougiouklis, T., A survey on the theory of n-hypergroups, Mathematics, 11 (2023), 551. https://doi.org/10.3390/math11030551
  • Davvaz, B., Mohammadi, F., Different types of ideals and homomorphisms of (m, n)- semirings, TWMS J. Pure Appl. Math., 12(2) (2021), 209-222.
  • Dickson, L., Definitions of a group and a field by independent postulates, Trans. Amer. Math. Soc., 6 (1905), 198-204.
  • Dörnte, W., Untersuchungen uber einen verallgemeinerten Gruppenbegriff, Math. Z., 29 (1929), 1-19.
  • Dudek, W. A., Glazek, K., Around the Hosszu-Gluskin theorem for n-ary groups, Discret. Math., 308 (2008), 4861-4876. https://doi.org/10.1016/j.disc.2007.09.005
  • Post, E. L., Polyadic groups, Trans. Amer. Math. Soc., 48 (1940), 208-350.
  • Usan, J., Zizovic, M., Some remarks on (m, n)-rings, Filomat, 13 (1999), 53-57.
  • Vasantha Kandasamy, W. B., Smarandache near-rings, American Research Press Rehoboth, NM, 2002.
There are 14 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Articles
Authors

Fahime Mohammadi This is me 0009-0003-1562-9231

Bijan Davvaz 0000-0003-1941-5372

Publication Date December 30, 2024
Submission Date June 3, 2024
Acceptance Date September 22, 2024
Published in Issue Year 2024

Cite

APA Mohammadi, F., & Davvaz, B. (2024). Ideal theory of $(m, n)$-near rings. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(4), 1098-1113. https://doi.org/10.31801/cfsuasmas.1494749
AMA Mohammadi F, Davvaz B. Ideal theory of $(m, n)$-near rings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2024;73(4):1098-1113. doi:10.31801/cfsuasmas.1494749
Chicago Mohammadi, Fahime, and Bijan Davvaz. “Ideal Theory of $(m, n)$-Near Rings”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 4 (December 2024): 1098-1113. https://doi.org/10.31801/cfsuasmas.1494749.
EndNote Mohammadi F, Davvaz B (December 1, 2024) Ideal theory of $(m, n)$-near rings. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 4 1098–1113.
IEEE F. Mohammadi and B. Davvaz, “Ideal theory of $(m, n)$-near rings”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 4, pp. 1098–1113, 2024, doi: 10.31801/cfsuasmas.1494749.
ISNAD Mohammadi, Fahime - Davvaz, Bijan. “Ideal Theory of $(m, n)$-Near Rings”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/4 (December 2024), 1098-1113. https://doi.org/10.31801/cfsuasmas.1494749.
JAMA Mohammadi F, Davvaz B. Ideal theory of $(m, n)$-near rings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:1098–1113.
MLA Mohammadi, Fahime and Bijan Davvaz. “Ideal Theory of $(m, n)$-Near Rings”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 4, 2024, pp. 1098-13, doi:10.31801/cfsuasmas.1494749.
Vancouver Mohammadi F, Davvaz B. Ideal theory of $(m, n)$-near rings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(4):1098-113.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.