Research Article
BibTex RIS Cite

On the polar derivative of lacunary type polynomials

Year 2024, , 1197 - 1209, 30.12.2024
https://doi.org/10.31801/cfsuasmas.1521079

Abstract

Let $p(z)=a_nz^n+\sum_{l=\nu}^na_{n-l}z^{n-l}$, where $1\leq \nu \leq n$, be a polynomial of degree $n$ having all its zeros in $|z|\leq k\leq 1$. For polar derivative $D_{\alpha}p(z)$, it is known that for each $|\alpha|\leq 1$ on $|z|=1$,
\begin{align*}
|D_{\alpha}p(z)|\leq \frac{n}{1+k^{\nu}}\Big\{(|\alpha|+k^{\nu})\|p\|_{\infty}-\frac{1-|\alpha|}{k^{n-\nu}}\min_{|z|=k}|p(z)|\Big\}.
\end{align*}
In this paper, we obtain the $L_q$ mean extension and a refinement of the above and other related results for the polar derivative of polynomials.

References

  • Bernstein, S., Sur la limitation des derivees des polnomese, C. R. Acad. Sci. Paris., 190, (1930), 338-341.
  • Zygmund, A., A remark on conjugate series, Proc. London Math. Soc., 34 (1932), 392-400. https://doi.org/10.1112/plms/s2-34.1.392
  • Arestov, V. V. , On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat., 45 (1981), 3-22 (in Russian), English transl. in Math. USSR Izv., 18 (1982), 1-17. https://doi.org/10.1070/IM1982v018n01ABEH001375
  • Lax, P. D., Proof of a conjecture of P. Erd¨os on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513. https://doi.org/10.1090/S0002-9904-1944-08177-9
  • Turan, P., Über die ableitung von Polynomen, Compos. Math., 7 (1939), 89-95.
  • De-Bruijn, N. G., Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc., 50, (1947), 1265-1272.
  • Rahman, Q. I., Schmeisser, G., Lp inequalities for polynomials, J. Approx. Theory., 53 (1988), 26-32. https://doi.org/10.1016/0021-9045(88)90073-1
  • Malik, M. A., On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60. http://doi.org/10.1112/jlms/s2-1.1.57
  • Govil, N. K., Rahman, Q. I., Functions of exponential type not vanishing in a half-plane and related polynomials, Trans. Amer. Math. Soc., 137 (1969), 501-517. https://doi.org/10.1090/S0002-9947-1969-0236385-6
  • Qazi, M. A., On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115 (1992), 337-343. https://doi.org/10.1090/S0002-9939-1992-1113648-1
  • Gardner, R. B., Weems, A., A Bernstein type Lp inequality for a certain class of polynomials, J. Math. Anal. Appl., 219 (1998), 472-478. https://doi.org/10.1006/jmaa.1997.5838
  • Aziz, A., Shah, W. M., An integral mean estimate for polynomial, Indian J. Pure Appl. Math., 28 (1997), 1413-1419.
  • Aziz, A., Rather, N. A., On an inequality concerning the polar derivative of a polynomial, Proc. Math. Sci., 117, (2007), 349-357. https://doi.org/10.48550/arXiv.0709.3346
  • Rather, N. A., Iqbal, A., Hyun, G. H., Integral inequalities for the polar derivative of a polynomial, Nonlinear Funct. Anal. Appl., 23 (2018), 381-393.
  • Dewan, K. K., Singh, N., Mir, A., Extensions of some polynomial inequalities to the polar derivative, J. Math. Anal. Appl., 352 (2009), 807-815. https://doi.org/10.1016/j.jmaa.2008.10.056
  • Gardner, R. B., Govil, N. K., Weems, A., Some results concerning rate of growth of polynomials, East J. Approx., 10 (2004), 301-312.
  • Aziz, A., Rather, N. A., Some Zygmund type Lq inequalities for polynomials, J. Math. Anal. Appl., 289 (2004), 14-29. https://doi.org/10.1016/S0022-247X(03)00530-4
  • Zireh, A., On the polar derivative of a polynomial, Bull. Iranian. Math. Soc., 41(2014), 967-976.
  • Aziz, A., Rather, N. A., New Lp inequalities for polynomials, J. Math. Inequl. App., 1 (1998), 177-191.
Year 2024, , 1197 - 1209, 30.12.2024
https://doi.org/10.31801/cfsuasmas.1521079

Abstract

References

  • Bernstein, S., Sur la limitation des derivees des polnomese, C. R. Acad. Sci. Paris., 190, (1930), 338-341.
  • Zygmund, A., A remark on conjugate series, Proc. London Math. Soc., 34 (1932), 392-400. https://doi.org/10.1112/plms/s2-34.1.392
  • Arestov, V. V. , On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat., 45 (1981), 3-22 (in Russian), English transl. in Math. USSR Izv., 18 (1982), 1-17. https://doi.org/10.1070/IM1982v018n01ABEH001375
  • Lax, P. D., Proof of a conjecture of P. Erd¨os on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513. https://doi.org/10.1090/S0002-9904-1944-08177-9
  • Turan, P., Über die ableitung von Polynomen, Compos. Math., 7 (1939), 89-95.
  • De-Bruijn, N. G., Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc., 50, (1947), 1265-1272.
  • Rahman, Q. I., Schmeisser, G., Lp inequalities for polynomials, J. Approx. Theory., 53 (1988), 26-32. https://doi.org/10.1016/0021-9045(88)90073-1
  • Malik, M. A., On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60. http://doi.org/10.1112/jlms/s2-1.1.57
  • Govil, N. K., Rahman, Q. I., Functions of exponential type not vanishing in a half-plane and related polynomials, Trans. Amer. Math. Soc., 137 (1969), 501-517. https://doi.org/10.1090/S0002-9947-1969-0236385-6
  • Qazi, M. A., On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115 (1992), 337-343. https://doi.org/10.1090/S0002-9939-1992-1113648-1
  • Gardner, R. B., Weems, A., A Bernstein type Lp inequality for a certain class of polynomials, J. Math. Anal. Appl., 219 (1998), 472-478. https://doi.org/10.1006/jmaa.1997.5838
  • Aziz, A., Shah, W. M., An integral mean estimate for polynomial, Indian J. Pure Appl. Math., 28 (1997), 1413-1419.
  • Aziz, A., Rather, N. A., On an inequality concerning the polar derivative of a polynomial, Proc. Math. Sci., 117, (2007), 349-357. https://doi.org/10.48550/arXiv.0709.3346
  • Rather, N. A., Iqbal, A., Hyun, G. H., Integral inequalities for the polar derivative of a polynomial, Nonlinear Funct. Anal. Appl., 23 (2018), 381-393.
  • Dewan, K. K., Singh, N., Mir, A., Extensions of some polynomial inequalities to the polar derivative, J. Math. Anal. Appl., 352 (2009), 807-815. https://doi.org/10.1016/j.jmaa.2008.10.056
  • Gardner, R. B., Govil, N. K., Weems, A., Some results concerning rate of growth of polynomials, East J. Approx., 10 (2004), 301-312.
  • Aziz, A., Rather, N. A., Some Zygmund type Lq inequalities for polynomials, J. Math. Anal. Appl., 289 (2004), 14-29. https://doi.org/10.1016/S0022-247X(03)00530-4
  • Zireh, A., On the polar derivative of a polynomial, Bull. Iranian. Math. Soc., 41(2014), 967-976.
  • Aziz, A., Rather, N. A., New Lp inequalities for polynomials, J. Math. Inequl. App., 1 (1998), 177-191.
There are 19 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Research Articles
Authors

Fatemeh Mohammadi 0009-0008-8855-3588

Ahmad Motamednezhad 0000-0001-6844-129X

Publication Date December 30, 2024
Submission Date July 24, 2024
Acceptance Date October 17, 2024
Published in Issue Year 2024

Cite

APA Mohammadi, F., & Motamednezhad, A. (2024). On the polar derivative of lacunary type polynomials. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(4), 1197-1209. https://doi.org/10.31801/cfsuasmas.1521079
AMA Mohammadi F, Motamednezhad A. On the polar derivative of lacunary type polynomials. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2024;73(4):1197-1209. doi:10.31801/cfsuasmas.1521079
Chicago Mohammadi, Fatemeh, and Ahmad Motamednezhad. “On the Polar Derivative of Lacunary Type Polynomials”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 4 (December 2024): 1197-1209. https://doi.org/10.31801/cfsuasmas.1521079.
EndNote Mohammadi F, Motamednezhad A (December 1, 2024) On the polar derivative of lacunary type polynomials. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 4 1197–1209.
IEEE F. Mohammadi and A. Motamednezhad, “On the polar derivative of lacunary type polynomials”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 4, pp. 1197–1209, 2024, doi: 10.31801/cfsuasmas.1521079.
ISNAD Mohammadi, Fatemeh - Motamednezhad, Ahmad. “On the Polar Derivative of Lacunary Type Polynomials”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/4 (December 2024), 1197-1209. https://doi.org/10.31801/cfsuasmas.1521079.
JAMA Mohammadi F, Motamednezhad A. On the polar derivative of lacunary type polynomials. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:1197–1209.
MLA Mohammadi, Fatemeh and Ahmad Motamednezhad. “On the Polar Derivative of Lacunary Type Polynomials”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 4, 2024, pp. 1197-09, doi:10.31801/cfsuasmas.1521079.
Vancouver Mohammadi F, Motamednezhad A. On the polar derivative of lacunary type polynomials. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(4):1197-209.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.