An analysis on the shape-preserving characteristics of 𝜆-Schurer operators
Year 2024,
, 1153 - 1170, 30.12.2024
Nezihe Turhan Turan
,
Zeynep Ödemiş Özger
Abstract
This study investigates the shape-preserving characteristics of 𝜆-Schurer operators, a class of operators derived from a modified version of the classical Schurer bases by incorporating a shape parameter 𝜆. The primary focus is on understanding how these operators maintain the geometric features of the functions they approximate, which is crucial in fields like computer graphics and geometric modelling. By examining the fundamental properties and the divided differences associated with 𝜆-Schurer bases, we derive vital results that confirm the operators’ capability to preserve essential shape attributes under various conditions. The findings have significant implications for the application of these operators in computational analysis and other related areas, providing a solid foundation for future research.
References
- Acu, A-M., Mutlu, G., Çekim, B., Yazıcı, S., A new representation and shape-preserving properties of perturbed Bernstein operators, Mathematical Methods in the Applied Sciences, 47(1) (2024), 5-14. 10.1002/mma.9636
- Ansari, K. J., Karakılıç, S., Özger, F., Bivariate Bernstein-Kantorovich operators with a summability method and related GBS operators, Filomat, 36(19) (2022), 6751-6765. https://doi.org/10.2298/FIL2219751A
- Ascher, U. M., Greif, C., A First Course in Numerical Methods, Society for Industrial and Applied Mathematics, Philadelphia, 2011. https://doi.org/10.1137/9780898719987.ch10
- Aslan, R., Mursaleen, M., Some approximation results on a class of new type λ-Bernstein polynomials, J. Math. Inequal., 16(2) (2022), 445-462. https://doi.org/10.7153/jmi-2022-16-32
- Aslan, R., Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators, Kuwait J. Sci., 51 (2024), 100168. https://doi.org/10.1016/j.kjs.2023.12.007
- Ayar, A., Sahin, B., Curves used in highway design and Bezier curves, Novi Sad J. Math, 52(1) (2022), 29-38. https://doi.org/10.30755/NSJOM.09557
- Ayman-Mursaleen, M., Nasiruzzaman, M., Rao, N., Dilshad, M., Nisar, K. S., Approximation by the modified λ-Bernstein-polynomial in terms of basis function, Aims Math., 9 (2024), 4409-4426. http://doi.org/10.3934/math.2024217
- Cai, Q. B., Aslan, R., On a new construction of generalized q-Bernstein polynomials based on shape parameter λ, Symmetry, 2021(13) (2021), 1919. https://doi.org/10.3390/sym13101919
- Cai, Q-B., Ansari, K. J., Temizer Ersoy, M., Özger, F., Statistical blending-type approximation by a class of operators that includes shape parameters λ and α, Mathematics, 10 (2022), 1149. https://doi.org/10.3390/math10071149
- Cai, Q-B., Aslan, R., Özger, F., Srivastava, H. M., Approximation by a new Stancu variant of generalized (λ, μ)-Bernstein operators, Alexandria Engineering Journal, 107 (2024), 205-214. https://doi.org/10.1016/j.aej.2024.07.015
- Mad Zain, S. A. A. A. S., Misro, M. Y., Miura, K. T., Enhancing flexibility and control in κ-curve using fractional Bezier curves, Alexandria Engineering Journal, 89 (2024), 71-82. https://doi.org/10.1016/j.aej.2024.01.047
- Ye, Z., Long, X., Zeng, X. M., Adjustment algorithms for B´ezier curve and surface, In: The 5. International Conference on Computer Science and Education, (2010), 1712-1716. https://doi.org/10.1109/ICCSE.2010.5593563
- Gezer, H., Aktuğlu, H., Baytunç, E., Atamert M. S., Generalized blending type Bernstein operators based on the shape parameter λ, J. Inequal. Appl., 2022(96) (2022), 1-19. https://doi.org/10.1186/s13660-022-02832-x
- Kajla, A., Özger, F., Yadav, J., Bezier-Baskakov-beta type operators, Filomat, 36(19) (2022), 6735-6750. https://doi.org/10.2298/FIL2219735K
- Marinescu, D. S¸., Niculescu C. P., Old and new on the 3-convex functions, Math. Inequal. Appl., 26(4) (2023), 911-933. https://doi.org/10.7153/mia-2023-26-56
- Özger, F., On new Bezier bases with Schurer polynomials and corresponding results in approximation theory, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1) (2020), 376-393. https://doi.org/10.31801/cfsuasmas.510382
- Özger, F., Aljimi, E., Temizer Ersoy, M., Rate of weighted statistical convergence for generalized blending-type Bernstein-Kantorovich operators, Mathematics, 10(12) (2022), 2027. https://doi.org/10.3390/math10122027
- Rao, N., Nasiruzzaman, Md., Heshamuddin, M., Shadab, M., Approximation properties by modified Baskakov-Durrmeyer operators based on shape parameter-α, Iran J. Sci. Technol. Trans. A Sci., 45 (2021), 1457-1465. https://doi.org/10.1007/s40995-021-01125-0
- Schurer, F., On linear positive operators in approximation theory, Math. Inst. Techn. Univ. Delft: Report, 1962.
- Srivastava, H. M., Ansari, K. J., Özger, F., Ödemis Özger, Z., A link between approximation theory and summability methods via four-dimensional infinite matrices, Mathematics, 9 (2021), 1895. https://doi.org/10.3390/math9161895
- Su, L. T., Mutlu, G., Çekim, B., On the shape-preserving properties of λ-Bernstein operators, J. Inequal. Appl., 2022(151) (2022), 1-11. DOI: 10.1186/s13660-022-02890-1
- Turhan, N., Özger, F., Mursaleen, M., Kantorovich-Stancu type (α, λ, s)-Bernstein operators and their approximation properties, Mathematical and Computer Modelling of Dynamical Systems, 30(1) (2024), 228-265. https://doi.org/ 10.1080/13873954.2024.2335382
Year 2024,
, 1153 - 1170, 30.12.2024
Nezihe Turhan Turan
,
Zeynep Ödemiş Özger
References
- Acu, A-M., Mutlu, G., Çekim, B., Yazıcı, S., A new representation and shape-preserving properties of perturbed Bernstein operators, Mathematical Methods in the Applied Sciences, 47(1) (2024), 5-14. 10.1002/mma.9636
- Ansari, K. J., Karakılıç, S., Özger, F., Bivariate Bernstein-Kantorovich operators with a summability method and related GBS operators, Filomat, 36(19) (2022), 6751-6765. https://doi.org/10.2298/FIL2219751A
- Ascher, U. M., Greif, C., A First Course in Numerical Methods, Society for Industrial and Applied Mathematics, Philadelphia, 2011. https://doi.org/10.1137/9780898719987.ch10
- Aslan, R., Mursaleen, M., Some approximation results on a class of new type λ-Bernstein polynomials, J. Math. Inequal., 16(2) (2022), 445-462. https://doi.org/10.7153/jmi-2022-16-32
- Aslan, R., Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators, Kuwait J. Sci., 51 (2024), 100168. https://doi.org/10.1016/j.kjs.2023.12.007
- Ayar, A., Sahin, B., Curves used in highway design and Bezier curves, Novi Sad J. Math, 52(1) (2022), 29-38. https://doi.org/10.30755/NSJOM.09557
- Ayman-Mursaleen, M., Nasiruzzaman, M., Rao, N., Dilshad, M., Nisar, K. S., Approximation by the modified λ-Bernstein-polynomial in terms of basis function, Aims Math., 9 (2024), 4409-4426. http://doi.org/10.3934/math.2024217
- Cai, Q. B., Aslan, R., On a new construction of generalized q-Bernstein polynomials based on shape parameter λ, Symmetry, 2021(13) (2021), 1919. https://doi.org/10.3390/sym13101919
- Cai, Q-B., Ansari, K. J., Temizer Ersoy, M., Özger, F., Statistical blending-type approximation by a class of operators that includes shape parameters λ and α, Mathematics, 10 (2022), 1149. https://doi.org/10.3390/math10071149
- Cai, Q-B., Aslan, R., Özger, F., Srivastava, H. M., Approximation by a new Stancu variant of generalized (λ, μ)-Bernstein operators, Alexandria Engineering Journal, 107 (2024), 205-214. https://doi.org/10.1016/j.aej.2024.07.015
- Mad Zain, S. A. A. A. S., Misro, M. Y., Miura, K. T., Enhancing flexibility and control in κ-curve using fractional Bezier curves, Alexandria Engineering Journal, 89 (2024), 71-82. https://doi.org/10.1016/j.aej.2024.01.047
- Ye, Z., Long, X., Zeng, X. M., Adjustment algorithms for B´ezier curve and surface, In: The 5. International Conference on Computer Science and Education, (2010), 1712-1716. https://doi.org/10.1109/ICCSE.2010.5593563
- Gezer, H., Aktuğlu, H., Baytunç, E., Atamert M. S., Generalized blending type Bernstein operators based on the shape parameter λ, J. Inequal. Appl., 2022(96) (2022), 1-19. https://doi.org/10.1186/s13660-022-02832-x
- Kajla, A., Özger, F., Yadav, J., Bezier-Baskakov-beta type operators, Filomat, 36(19) (2022), 6735-6750. https://doi.org/10.2298/FIL2219735K
- Marinescu, D. S¸., Niculescu C. P., Old and new on the 3-convex functions, Math. Inequal. Appl., 26(4) (2023), 911-933. https://doi.org/10.7153/mia-2023-26-56
- Özger, F., On new Bezier bases with Schurer polynomials and corresponding results in approximation theory, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1) (2020), 376-393. https://doi.org/10.31801/cfsuasmas.510382
- Özger, F., Aljimi, E., Temizer Ersoy, M., Rate of weighted statistical convergence for generalized blending-type Bernstein-Kantorovich operators, Mathematics, 10(12) (2022), 2027. https://doi.org/10.3390/math10122027
- Rao, N., Nasiruzzaman, Md., Heshamuddin, M., Shadab, M., Approximation properties by modified Baskakov-Durrmeyer operators based on shape parameter-α, Iran J. Sci. Technol. Trans. A Sci., 45 (2021), 1457-1465. https://doi.org/10.1007/s40995-021-01125-0
- Schurer, F., On linear positive operators in approximation theory, Math. Inst. Techn. Univ. Delft: Report, 1962.
- Srivastava, H. M., Ansari, K. J., Özger, F., Ödemis Özger, Z., A link between approximation theory and summability methods via four-dimensional infinite matrices, Mathematics, 9 (2021), 1895. https://doi.org/10.3390/math9161895
- Su, L. T., Mutlu, G., Çekim, B., On the shape-preserving properties of λ-Bernstein operators, J. Inequal. Appl., 2022(151) (2022), 1-11. DOI: 10.1186/s13660-022-02890-1
- Turhan, N., Özger, F., Mursaleen, M., Kantorovich-Stancu type (α, λ, s)-Bernstein operators and their approximation properties, Mathematical and Computer Modelling of Dynamical Systems, 30(1) (2024), 228-265. https://doi.org/ 10.1080/13873954.2024.2335382