Research Article
BibTex RIS Cite

On the inverse problem for finite dissipative Jacobi matrices with a rank-one imaginary part

Year 2019, , 1273 - 1288, 01.08.2019
https://doi.org/10.31801/cfsuasmas.419098

Abstract

This paper deals with the inverse spectral problem consisting in the reconstruction of a finite dissipative Jacobi matrix with a rank-one imaginary part from its eigenvalues. Necessary and sufficient conditions are formulated for a prescribed collection of complex numbers to be the spectrum of a finite dissipative Jacobi matrix with a rank-one imaginary part. Uniqueness of the matrix having prescribed eigenvalues is shown and an algorithm for reconstruction of the matrix from prescribed eigenvalues is given.

References

  • Arlinskii, Yu. and Tsekanovskii, E., Non-self-adjoint Jacobi matrices with a rank-one imaginary part, J. Funct. Anal., 241 (2006), 383--438.
  • Boley, D. and Golub, G. H., A survey of matrix inverse eigenvalue problems, Inverse Problems, 3 (1987), 595--622.
  • de Boor, C. and Golub, G. H., The numerically stable reconstruction of a Jacobi matrix from spectral data, Linear Algebra Appl., 21 (1978), 245--260.
  • Fuhrmann, P. A., A Polynomial Approach to Linear Algebra, Second Edition, Springer, New York, 2012.
  • Gelfand, I. M. and Levitan, B. M., On the determination of a differential equation from its spectral function, Izv. Akad. Nauk, Ser. Mat., 15 (1951), 309--360 (Russian); Engl. transl., Amer. Math. Soc. Transl., (2) 1 (1955), 253--304.
  • Gesztesy, F. and Simon, B., M-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices, J. Anal. Math ., 73 (1997), 267--297.
  • Gray, L. J. and Wilson, D. G., Construction of a Jacobi matrix from spectral data, Linear Algebra Appl., 14 (1976), 131--134.
  • Guseinov, G. Sh., Construction of a complex Jacobi matrix from two-spectra, Hacettepe J. Math. Stat., 40 (2011), 297--303.
  • Guseinov, G. Sh., On an inverse problem for two spectra of finite Jacobi matrices, Appl. Math. Comput., 218 (2012), 7573--7589. Guseinov, G. Sh., On a discrete inverse problem for two spectra, Discrete Dynamics in Nature and Society, 2012 (2012), Article ID 956407, 14 pages.
  • Hald, O. H., Inverse eigenvalue problems for Jacobi matrices, Linear Algebra Appl., 14 (1976), 63--85.
  • Hochstadt, H., On some inverse problems in matrix theory, Arch. Math., 18 (1967), 201--207.
  • Hochstadt, H., On construction of a Jacobi matrix from spectral data, Linear Algebra Appl., 8 (1974), 435--446. Huseynov, A. and Guseinov, G. Sh., Solution of the finite complex Toda lattice by the method of inverse spectral problem, Appl. Math. Comput., 219 (2013), 5550--5563.
  • Teschl, G., Jacobi Operators and Completely Integrable Nonlinear Lattices, vol. 72 of Mathematical Surveys and Monographs, American Mathematical Society, 2000.
  • Ergun, E. and Huseynov, A., On an Inverse Problem for a Quadratic Eigenvalue Problem, Int. J. Difference Equ., vol. 12, 1 (2017), 13--26.
Year 2019, , 1273 - 1288, 01.08.2019
https://doi.org/10.31801/cfsuasmas.419098

Abstract

References

  • Arlinskii, Yu. and Tsekanovskii, E., Non-self-adjoint Jacobi matrices with a rank-one imaginary part, J. Funct. Anal., 241 (2006), 383--438.
  • Boley, D. and Golub, G. H., A survey of matrix inverse eigenvalue problems, Inverse Problems, 3 (1987), 595--622.
  • de Boor, C. and Golub, G. H., The numerically stable reconstruction of a Jacobi matrix from spectral data, Linear Algebra Appl., 21 (1978), 245--260.
  • Fuhrmann, P. A., A Polynomial Approach to Linear Algebra, Second Edition, Springer, New York, 2012.
  • Gelfand, I. M. and Levitan, B. M., On the determination of a differential equation from its spectral function, Izv. Akad. Nauk, Ser. Mat., 15 (1951), 309--360 (Russian); Engl. transl., Amer. Math. Soc. Transl., (2) 1 (1955), 253--304.
  • Gesztesy, F. and Simon, B., M-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices, J. Anal. Math ., 73 (1997), 267--297.
  • Gray, L. J. and Wilson, D. G., Construction of a Jacobi matrix from spectral data, Linear Algebra Appl., 14 (1976), 131--134.
  • Guseinov, G. Sh., Construction of a complex Jacobi matrix from two-spectra, Hacettepe J. Math. Stat., 40 (2011), 297--303.
  • Guseinov, G. Sh., On an inverse problem for two spectra of finite Jacobi matrices, Appl. Math. Comput., 218 (2012), 7573--7589. Guseinov, G. Sh., On a discrete inverse problem for two spectra, Discrete Dynamics in Nature and Society, 2012 (2012), Article ID 956407, 14 pages.
  • Hald, O. H., Inverse eigenvalue problems for Jacobi matrices, Linear Algebra Appl., 14 (1976), 63--85.
  • Hochstadt, H., On some inverse problems in matrix theory, Arch. Math., 18 (1967), 201--207.
  • Hochstadt, H., On construction of a Jacobi matrix from spectral data, Linear Algebra Appl., 8 (1974), 435--446. Huseynov, A. and Guseinov, G. Sh., Solution of the finite complex Toda lattice by the method of inverse spectral problem, Appl. Math. Comput., 219 (2013), 5550--5563.
  • Teschl, G., Jacobi Operators and Completely Integrable Nonlinear Lattices, vol. 72 of Mathematical Surveys and Monographs, American Mathematical Society, 2000.
  • Ergun, E. and Huseynov, A., On an Inverse Problem for a Quadratic Eigenvalue Problem, Int. J. Difference Equ., vol. 12, 1 (2017), 13--26.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Ebru Ergun 0000-0003-4873-6191

Publication Date August 1, 2019
Submission Date April 27, 2018
Acceptance Date August 7, 2018
Published in Issue Year 2019

Cite

APA Ergun, E. (2019). On the inverse problem for finite dissipative Jacobi matrices with a rank-one imaginary part. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1273-1288. https://doi.org/10.31801/cfsuasmas.419098
AMA Ergun E. On the inverse problem for finite dissipative Jacobi matrices with a rank-one imaginary part. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1273-1288. doi:10.31801/cfsuasmas.419098
Chicago Ergun, Ebru. “On the Inverse Problem for Finite Dissipative Jacobi Matrices With a Rank-One Imaginary Part”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1273-88. https://doi.org/10.31801/cfsuasmas.419098.
EndNote Ergun E (August 1, 2019) On the inverse problem for finite dissipative Jacobi matrices with a rank-one imaginary part. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1273–1288.
IEEE E. Ergun, “On the inverse problem for finite dissipative Jacobi matrices with a rank-one imaginary part”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1273–1288, 2019, doi: 10.31801/cfsuasmas.419098.
ISNAD Ergun, Ebru. “On the Inverse Problem for Finite Dissipative Jacobi Matrices With a Rank-One Imaginary Part”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1273-1288. https://doi.org/10.31801/cfsuasmas.419098.
JAMA Ergun E. On the inverse problem for finite dissipative Jacobi matrices with a rank-one imaginary part. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1273–1288.
MLA Ergun, Ebru. “On the Inverse Problem for Finite Dissipative Jacobi Matrices With a Rank-One Imaginary Part”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1273-88, doi:10.31801/cfsuasmas.419098.
Vancouver Ergun E. On the inverse problem for finite dissipative Jacobi matrices with a rank-one imaginary part. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1273-88.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.