Research Article
BibTex RIS Cite
Year 2019, , 125 - 135, 01.02.2019
https://doi.org/10.31801/cfsuasmas.443665

Abstract

References

  • Brannan, D. A., Clunie J. and Kirwan, W. E., Coefficient estimates for a class of starlike functions, Can. J. Math. 22 (1970) 476-485.
  • Brannan, D. A. and Taha, T.S., On some classes of bi-univalent functions, KFAS Proceedings Series, vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, 53-60.
  • Catas, A., Oros, G. I., Oros, G., Differential subordinations associated with multiplier transformations, Abstr. Appl. Anal. (2008), ID 845724:1-11.
  • Chen, M., On the regular functions satisfying ℜ(f(z)/z)>α, Bull. Inst. Math. Acad. Sinica 3 (1975) 65-70.
  • Chichra, P. N., New subclasses of the class of close-to-convex functions, Proc. Am. Math. Soc. (62) (1977) 37-43.
  • Çaglar, M., Deniz, E. and Srivastava, H. M., Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math. 41, (2017) 694-706.
  • Ding, S. S., Ling Y. and Bao, G. J., Some properties of a class of analytic functions, J. Math. Anal. Appl. 195 (1) (1995) 71-81.
  • Duren, P. L., [newblock]<LaTeX>\newblock{\em Univalent Functions}</LaTeX>, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
  • Dziok, J., Srivastava, H. M., Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999) 1-13.
  • El-Ashwah, R. M., Subclasses of bi-univalent functions defined by convolution, J. Egypt. Math. Soc. (2013)
  • Frasin B. A. and Aouf, M. K., New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011) 1569-1573.
  • MacGregor, T. H., Functions whose derivative has a positive real part, Trans. Am. Math. Soc. 104 (1962) 532-537. Ch. : Pommerenke, C., Univalent Functions, Vandenhoeck and Rupercht, Gottingen, 1975.
  • Porwal S. and Darus, M., On a new subclass of bi-univalent functions, J. Egyptian Math. Soc. 21, (2013) 190-193.
  • Srivastava, H. M., Mishra A. K. and Gochhayat, P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010) 1188-1192.
  • Srivastava, H. M., Bulut, S., Çağlar M. and Yağmur, N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (5), (2013) 831-842.
  • H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat. 28, (2017) 693-706.
  • Srivastava, H. M., Gaboury S. and Ghanim, F., Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed. 36, (2016) 863-871.
  • Srivastava, H. M., Joshi, B. S., Joshi S. and Pawar, H., Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math. 5, (2016) Special Issue, 250-258.
  • Srivastava, H. M., Sumer Eker S. and Rosihan Ali, M., Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29, (2015) 1839-1845.
  • Srivastava H. M. and Bansal, D., Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23, (2015) 242-246.
  • Srivastava, H. M., Gaboury S. and Ghanim, F., Coefficient estimates for some subclasses of M-fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform. 23, (2015) 153-164.
  • Srivastava, H. M., Sivasubramanian S. and Sivakumar, R., Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J. 7, (2014) 1-10.
  • Tang, Huo, Srivastava, H. M., Sivasubramanian S. and Gurusamy, P., The Fekete-Szego functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal. 10, (2016) 1063-1092.
  • Q.- H. Xu, Y.- C. Gui and H. M. Srivastava, Coefficient estimates for a Certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25, (2012) 990-994.
  • Xu, Q. -H., Xiao H. -G. and Srivastava, H. M., A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (23), (2012), 11461-11465.
  • Z : Zireh A. and Analouei Audegani, E., Coefficient estimates for a subclass of analytic and bi-univalent functions, Bull. Iranian Math. Soc. 42 (2016), 881-889.form [eqref]<LaTeX>\eqref{m1.1}</LaTeX>. Then

Bounds for initial MacLaurin coefficients of a subclass of bi-univalent functions associated with subordination

Year 2019, , 125 - 135, 01.02.2019
https://doi.org/10.31801/cfsuasmas.443665

Abstract

In this paper, we investigate the bounds of the coefficients for new subclasses of analytic and bi-univalent functions in the open unit disc defined by subordination. The coefficients bounds presented in this paper would generalize and improve those in related works of several earlier authors

References

  • Brannan, D. A., Clunie J. and Kirwan, W. E., Coefficient estimates for a class of starlike functions, Can. J. Math. 22 (1970) 476-485.
  • Brannan, D. A. and Taha, T.S., On some classes of bi-univalent functions, KFAS Proceedings Series, vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, 53-60.
  • Catas, A., Oros, G. I., Oros, G., Differential subordinations associated with multiplier transformations, Abstr. Appl. Anal. (2008), ID 845724:1-11.
  • Chen, M., On the regular functions satisfying ℜ(f(z)/z)>α, Bull. Inst. Math. Acad. Sinica 3 (1975) 65-70.
  • Chichra, P. N., New subclasses of the class of close-to-convex functions, Proc. Am. Math. Soc. (62) (1977) 37-43.
  • Çaglar, M., Deniz, E. and Srivastava, H. M., Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math. 41, (2017) 694-706.
  • Ding, S. S., Ling Y. and Bao, G. J., Some properties of a class of analytic functions, J. Math. Anal. Appl. 195 (1) (1995) 71-81.
  • Duren, P. L., [newblock]<LaTeX>\newblock{\em Univalent Functions}</LaTeX>, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
  • Dziok, J., Srivastava, H. M., Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999) 1-13.
  • El-Ashwah, R. M., Subclasses of bi-univalent functions defined by convolution, J. Egypt. Math. Soc. (2013)
  • Frasin B. A. and Aouf, M. K., New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011) 1569-1573.
  • MacGregor, T. H., Functions whose derivative has a positive real part, Trans. Am. Math. Soc. 104 (1962) 532-537. Ch. : Pommerenke, C., Univalent Functions, Vandenhoeck and Rupercht, Gottingen, 1975.
  • Porwal S. and Darus, M., On a new subclass of bi-univalent functions, J. Egyptian Math. Soc. 21, (2013) 190-193.
  • Srivastava, H. M., Mishra A. K. and Gochhayat, P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010) 1188-1192.
  • Srivastava, H. M., Bulut, S., Çağlar M. and Yağmur, N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (5), (2013) 831-842.
  • H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat. 28, (2017) 693-706.
  • Srivastava, H. M., Gaboury S. and Ghanim, F., Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed. 36, (2016) 863-871.
  • Srivastava, H. M., Joshi, B. S., Joshi S. and Pawar, H., Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math. 5, (2016) Special Issue, 250-258.
  • Srivastava, H. M., Sumer Eker S. and Rosihan Ali, M., Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29, (2015) 1839-1845.
  • Srivastava H. M. and Bansal, D., Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23, (2015) 242-246.
  • Srivastava, H. M., Gaboury S. and Ghanim, F., Coefficient estimates for some subclasses of M-fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform. 23, (2015) 153-164.
  • Srivastava, H. M., Sivasubramanian S. and Sivakumar, R., Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J. 7, (2014) 1-10.
  • Tang, Huo, Srivastava, H. M., Sivasubramanian S. and Gurusamy, P., The Fekete-Szego functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal. 10, (2016) 1063-1092.
  • Q.- H. Xu, Y.- C. Gui and H. M. Srivastava, Coefficient estimates for a Certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25, (2012) 990-994.
  • Xu, Q. -H., Xiao H. -G. and Srivastava, H. M., A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (23), (2012), 11461-11465.
  • Z : Zireh A. and Analouei Audegani, E., Coefficient estimates for a subclass of analytic and bi-univalent functions, Bull. Iranian Math. Soc. 42 (2016), 881-889.form [eqref]<LaTeX>\eqref{m1.1}</LaTeX>. Then
There are 26 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Ahmad Motamednezhad 0000-0001-6844-129X

Shahpour Nosrati This is me 0000-0002-8127-4913

Sima Zaker This is me 0000-0002-3004-443X

Publication Date February 1, 2019
Submission Date October 5, 2017
Acceptance Date July 13, 2018
Published in Issue Year 2019

Cite

APA Motamednezhad, A., Nosrati, S., & Zaker, S. (2019). Bounds for initial MacLaurin coefficients of a subclass of bi-univalent functions associated with subordination. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 125-135. https://doi.org/10.31801/cfsuasmas.443665
AMA Motamednezhad A, Nosrati S, Zaker S. Bounds for initial MacLaurin coefficients of a subclass of bi-univalent functions associated with subordination. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):125-135. doi:10.31801/cfsuasmas.443665
Chicago Motamednezhad, Ahmad, Shahpour Nosrati, and Sima Zaker. “Bounds for Initial MacLaurin Coefficients of a Subclass of Bi-Univalent Functions Associated With Subordination”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 125-35. https://doi.org/10.31801/cfsuasmas.443665.
EndNote Motamednezhad A, Nosrati S, Zaker S (February 1, 2019) Bounds for initial MacLaurin coefficients of a subclass of bi-univalent functions associated with subordination. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 125–135.
IEEE A. Motamednezhad, S. Nosrati, and S. Zaker, “Bounds for initial MacLaurin coefficients of a subclass of bi-univalent functions associated with subordination”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 125–135, 2019, doi: 10.31801/cfsuasmas.443665.
ISNAD Motamednezhad, Ahmad et al. “Bounds for Initial MacLaurin Coefficients of a Subclass of Bi-Univalent Functions Associated With Subordination”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 125-135. https://doi.org/10.31801/cfsuasmas.443665.
JAMA Motamednezhad A, Nosrati S, Zaker S. Bounds for initial MacLaurin coefficients of a subclass of bi-univalent functions associated with subordination. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:125–135.
MLA Motamednezhad, Ahmad et al. “Bounds for Initial MacLaurin Coefficients of a Subclass of Bi-Univalent Functions Associated With Subordination”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 125-3, doi:10.31801/cfsuasmas.443665.
Vancouver Motamednezhad A, Nosrati S, Zaker S. Bounds for initial MacLaurin coefficients of a subclass of bi-univalent functions associated with subordination. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):125-3.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.