Research Article
BibTex RIS Cite

Fixed point results for F-expansive mappings in ordered metric spaces

Year 2019, , 801 - 808, 01.02.2019
https://doi.org/10.31801/cfsuasmas.478652

Abstract

In this article, we prove some existence and uniqueness fixed point results for F-expansive mappings in partially ordered metric spaces. We support the usability of our results adopting suitable examples.

References

  • Wardowski, D., Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl., Art. ID 94 (2012).
  • Górnicki, J., Fixed point theorems for F-expanding mappings. Fixed Point Theory Appl., Art. ID 9 (2017).
  • Ran, A. C. M. and Reurings, M. C. B., A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc., 132(5) (2004), 1435--1443.
  • Alam, A., Khan, A-R and Imdad, M., Some coincidence theorems for generalized nonlinear contractions in ordered metric spaces with applications. Fixed Point Theory Appl., Art. ID 216 (2014).
  • Ćirić, L., Abbas, M., Saadati, R. and Hussain, H., Common fixed points of almost generalized contractive mappings in ordered metric spaces. Applied Mathematics and Computation, 217(12) (2011), 5784--5789.
  • Gubran, R. and Imdad, M., Results on coincidence and common fixed points for (ψ, ϕ) g-generalized weakly contractive mappings in ordered metric spaces. Mathematics, 4 (68) (2016), 1--13.
  • Imdad, M., Gubran, R. and Ahmadullah, Md., Using an implicit function to prove common fixed point theorems. J.Adv.Math.Stud, 11(3) (2018), 481-495.
  • Imdad, M. and Gubran, R., Ordered-theortic fixed point results for monotone generalized Boyd-Wong and Matkowski type contractions. J. Adv. Mat. Stud., 10(1) (2017), 49--61.
  • Nashine, H. K. and Altun, I., A common fixed point theorem on ordered metric spaces. Bulletin of the Iranian Mathematical Society, 38(4) (2012), 925--934.
  • Nieto, J. J. and Rodríguez-López, R., Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order, 22(3) (2005), 223--239.
  • Nieto, J. J. and Rodríguez-López, R., Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. (Engl. Ser.), 23(12) (2007), 2205--2212.
  • O'Regan, D. and Petruşel, A., Fixed point theorems for generalized contractions in ordered metric spaces. J. Math. Anal. Appl, 341(2) (2008), 1241--1252.
  • Abbas, M., Ali, B. and Romaguera, S., Fixed and periodic points of generalized contractions in metric spaces. Fixed Point Theory Appl., Art. ID:243:1--11, 2013.
  • Cosentino, M. and Vetro, P., Fixed point results for F-contractive mappings of Hardy-Rogers-type. Filomat, 28(4) (2014), 715--722.
  • Durmaz, G., Mınak, G. and Altun, I., Fixed points of ordered F-contractions. Hacettepe Journal of Mathematics and Statistics, 45(1) (2016), 15--21.
  • Imdad, M., Gubran, R., Arif, M. and Gopal, D., An observation on α-type F-contractions and some ordered-theoretic fixed point results. Mathematical Sciences, 11(3) (2017), 247--255.
  • Sgroi, M. and Vetro, C., Multi-valued F-contractions and the solution of certain functional and integral equations. Filomat, 27(7) (2013), 1259--1268.
  • Wang, S. Z., Some fixed point theorems on expansion mappings. Math. Japon., 29 (1984), 631--636.
Year 2019, , 801 - 808, 01.02.2019
https://doi.org/10.31801/cfsuasmas.478652

Abstract

References

  • Wardowski, D., Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl., Art. ID 94 (2012).
  • Górnicki, J., Fixed point theorems for F-expanding mappings. Fixed Point Theory Appl., Art. ID 9 (2017).
  • Ran, A. C. M. and Reurings, M. C. B., A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc., 132(5) (2004), 1435--1443.
  • Alam, A., Khan, A-R and Imdad, M., Some coincidence theorems for generalized nonlinear contractions in ordered metric spaces with applications. Fixed Point Theory Appl., Art. ID 216 (2014).
  • Ćirić, L., Abbas, M., Saadati, R. and Hussain, H., Common fixed points of almost generalized contractive mappings in ordered metric spaces. Applied Mathematics and Computation, 217(12) (2011), 5784--5789.
  • Gubran, R. and Imdad, M., Results on coincidence and common fixed points for (ψ, ϕ) g-generalized weakly contractive mappings in ordered metric spaces. Mathematics, 4 (68) (2016), 1--13.
  • Imdad, M., Gubran, R. and Ahmadullah, Md., Using an implicit function to prove common fixed point theorems. J.Adv.Math.Stud, 11(3) (2018), 481-495.
  • Imdad, M. and Gubran, R., Ordered-theortic fixed point results for monotone generalized Boyd-Wong and Matkowski type contractions. J. Adv. Mat. Stud., 10(1) (2017), 49--61.
  • Nashine, H. K. and Altun, I., A common fixed point theorem on ordered metric spaces. Bulletin of the Iranian Mathematical Society, 38(4) (2012), 925--934.
  • Nieto, J. J. and Rodríguez-López, R., Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order, 22(3) (2005), 223--239.
  • Nieto, J. J. and Rodríguez-López, R., Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. (Engl. Ser.), 23(12) (2007), 2205--2212.
  • O'Regan, D. and Petruşel, A., Fixed point theorems for generalized contractions in ordered metric spaces. J. Math. Anal. Appl, 341(2) (2008), 1241--1252.
  • Abbas, M., Ali, B. and Romaguera, S., Fixed and periodic points of generalized contractions in metric spaces. Fixed Point Theory Appl., Art. ID:243:1--11, 2013.
  • Cosentino, M. and Vetro, P., Fixed point results for F-contractive mappings of Hardy-Rogers-type. Filomat, 28(4) (2014), 715--722.
  • Durmaz, G., Mınak, G. and Altun, I., Fixed points of ordered F-contractions. Hacettepe Journal of Mathematics and Statistics, 45(1) (2016), 15--21.
  • Imdad, M., Gubran, R., Arif, M. and Gopal, D., An observation on α-type F-contractions and some ordered-theoretic fixed point results. Mathematical Sciences, 11(3) (2017), 247--255.
  • Sgroi, M. and Vetro, C., Multi-valued F-contractions and the solution of certain functional and integral equations. Filomat, 27(7) (2013), 1259--1268.
  • Wang, S. Z., Some fixed point theorems on expansion mappings. Math. Japon., 29 (1984), 631--636.
There are 18 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Rqeeb Gubran This is me 0000-0002-9035-8481

Walled M. Alfaqıh 0000-0001-6281-1229

Mohammad Imdad 0000-0003-3270-1365

Publication Date February 1, 2019
Submission Date October 18, 2017
Acceptance Date April 13, 2018
Published in Issue Year 2019

Cite

APA Gubran, R., Alfaqıh, W. M., & Imdad, M. (2019). Fixed point results for F-expansive mappings in ordered metric spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 801-808. https://doi.org/10.31801/cfsuasmas.478652
AMA Gubran R, Alfaqıh WM, Imdad M. Fixed point results for F-expansive mappings in ordered metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):801-808. doi:10.31801/cfsuasmas.478652
Chicago Gubran, Rqeeb, Walled M. Alfaqıh, and Mohammad Imdad. “Fixed Point Results for F-Expansive Mappings in Ordered Metric Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 801-8. https://doi.org/10.31801/cfsuasmas.478652.
EndNote Gubran R, Alfaqıh WM, Imdad M (February 1, 2019) Fixed point results for F-expansive mappings in ordered metric spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 801–808.
IEEE R. Gubran, W. M. Alfaqıh, and M. Imdad, “Fixed point results for F-expansive mappings in ordered metric spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 801–808, 2019, doi: 10.31801/cfsuasmas.478652.
ISNAD Gubran, Rqeeb et al. “Fixed Point Results for F-Expansive Mappings in Ordered Metric Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 801-808. https://doi.org/10.31801/cfsuasmas.478652.
JAMA Gubran R, Alfaqıh WM, Imdad M. Fixed point results for F-expansive mappings in ordered metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:801–808.
MLA Gubran, Rqeeb et al. “Fixed Point Results for F-Expansive Mappings in Ordered Metric Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 801-8, doi:10.31801/cfsuasmas.478652.
Vancouver Gubran R, Alfaqıh WM, Imdad M. Fixed point results for F-expansive mappings in ordered metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):801-8.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.