Research Article
BibTex RIS Cite
Year 2020, , 376 - 393, 30.06.2020
https://doi.org/10.31801/cfsuasmas.510382

Abstract

References

  • Acu, A.M., Acar, T., Muraru, C.V., Radu, V.A. Some approximation properties by a class of bivariate operators, Mathematical Methods in the Applied Sciences, 42 (2019), 1-15.
  • Ansari, K., Ahmad, I., Mursaleen, M., Hussain, I. On some statistical approximation by (p,q)-Bleimann, Butzer and Hahn operators. Symmetry, 10(12) (2018), 731.
  • Bernstein, S.N. Demonstration du theoreme de Weierstrass fondee sur le calcul des probabilites, Communications of the Kharkov Mathematical Society, 13(2) (1912),1-2.
  • Butzer, PL., Berens, H. Semi-groups of operators and approximation, Springer, New York, 1967.
  • Cai, Q.B., Zhou, G., Li, J. Statistical approximation properties of λ-Bernstein operators based on q-integers, Open Mathematics, 17(1) (2019), 487-498.
  • Cai, Q-B., Lian, B-Y., Zhou, G. Approximation properties of λ-Bernstein operators, J. Ineq. and App. (2018) 2018:61.
  • Ditzian, Z., Totik, V. Moduli of Smoothness, Springer, New York, 1987.
  • Fast, H. Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
  • DeVore, R.A., Lorentz, G.G. Constructive Approximation, Springer, Berlin, 1993.
  • Gadjiev, A.D., Orhan, C. Some approximation properties via statistical convergence, Rocky Mountain J. Math., 32 (2002), 129-138.
  • Kadak, U. Weighted statistical convergence based on generalized difference operator involving (p,q)-gamma function and its applications to approximation theorems, J. Math. Anal. Appl., 448 (2017), 1663-1650.
  • Kadak, U., Braha, N.L., Srivastava, H.M. Statistical weighted B-summability and its applications to approximation theorems, Appl. Math. Comput., 302 (2017), 80-96.
  • Kajla, A., Ispir, N., Agrawal, P.N., Goyal, M. q- Bernstein-Schurer-Durrmeyer type operators for functions of one and two variables, Appl. Math. Comput., 275 (2016), 372-385.
  • Kanat, K., Sofyalıoglu, M. Some approximation results for (p, q)-Lupas-Schurer operators, Filomat, 32(1) (2018), 217-229.
  • Khan, K., Lobiyal, D.K. Beźier curves based on Lupaş (p, q)-analogue of Bernstein functions in CAGD, Journal of Computational and Applied Mathematics, 317 (2017), 458-477.
  • Mohiuddine, S.A., Alotaibi A., Hazarika B. Weighted A-statistical convergence for sequences of positive linear operators, Sci. World J., (2014) no. 437863.
  • Mohiuddine, S.A. Statistical weighted A-summability with application to Korovkin's type approximation theorem, J. Ineq. and App., (2016) 2018:101.
  • Orhan, S., Demirci, K. K_{a}-convergence and Korovkin type approximation, Periodica Mathematica Hungarica, 77(1) (2018), 108-118.
  • Ozarslan, M.A., Aktuğlu, H. Local approximation for certain King type operators, Filomat, (2013) 27(1), 173-181.
  • Özger, F. Weighted statistical approximation properties of univariate and bivariate λ-Kantorovich operators, Filomat, 33(11) (2019), 3473-3486.
  • Peetre, J. Theory of interpolation of normed spaces. Notas Mat. Rio de Janeiro, 39 (1963), 1-86.
  • Pop, O.T., Barbosu, D., Piscoran, L.I. Bezier type curves generated by some class of positive linear operators, Creat. Math. Inform., 19 (2010), 191-198.
  • Rahman, S., Mursaleen, M., Acu, A.M. Approximation properties of λ-Bernstein-Kantorovich operators with shifted knots, Mathematical Methods in the Applied Sciences, 42(11) (2019), 4042-4053.
  • Sever, Y., Talo, Ö. On statistical e-convergence of double sequences, Iranian Journal of Science and Technology, Transactions A: Science, 42(12) (2018), 1-6.
  • Schurer, F. Linear positive operators in approximation theory, Math. Inst. Techn. Univ. Delft:Report, 1962.
  • Srivastava, H.M., Özger, F., Mohiuddine, S.A. Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter λ, Symmetry, 11(3) (2019), Article 316.
  • Steinhaus, H. Sur la ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
  • Wafi, A., Rao, N. Bivariate-Schurer-Stancu operators based on (p;q)-integers, Filomat, 32(4) (2016), 1251-1258.
  • Winkel, R. On a generalization of Bernstein polynomials and Bezier curves based on umbral calculus, Computer Aided Geometric Design, 31(5) (2014), 227-244.
  • Ye, Z., Long, X., Zeng, X.-M. Adjustment algorithms for Bezier curve and surface, International Conference on Computer Science and Education, (2010) 1712-1716.
  • Yıldız, S., Dirik, F., Demirci, K. Korovkin type approximation theorem via K_{a}-convergence on weighted spaces, Mathematical Methods in the Applied Sciences, (2018) doi:10.1002/mma.5391.
  • Yıldız, S. Korovkin theorem via statistical e-modular convergence of double sequences, Sakarya University Journal of Science, 22(6) (2018), 1743-1751.

On new Bézier bases with Schurer polynomials and corresponding results in approximation theory

Year 2020, , 376 - 393, 30.06.2020
https://doi.org/10.31801/cfsuasmas.510382

Abstract

A new type Bézier bases with λ shape parameters have been defined <cite>ye</cite>. We slightly modify these bases to establish new Bézier bases with Schurer polynomials and λ shape parameters. We construct a new type Schurer operators via defined new Bézier-Schurer bases. Also, we study statistical convergence properties of these operators and obtain an estimate for the rate of weighted A-statistical convergence. Moreover, we prove two Voronovskaja-type theorems including a Voronovskaja-type approximation theorem using weighted A-statistical convergence.

References

  • Acu, A.M., Acar, T., Muraru, C.V., Radu, V.A. Some approximation properties by a class of bivariate operators, Mathematical Methods in the Applied Sciences, 42 (2019), 1-15.
  • Ansari, K., Ahmad, I., Mursaleen, M., Hussain, I. On some statistical approximation by (p,q)-Bleimann, Butzer and Hahn operators. Symmetry, 10(12) (2018), 731.
  • Bernstein, S.N. Demonstration du theoreme de Weierstrass fondee sur le calcul des probabilites, Communications of the Kharkov Mathematical Society, 13(2) (1912),1-2.
  • Butzer, PL., Berens, H. Semi-groups of operators and approximation, Springer, New York, 1967.
  • Cai, Q.B., Zhou, G., Li, J. Statistical approximation properties of λ-Bernstein operators based on q-integers, Open Mathematics, 17(1) (2019), 487-498.
  • Cai, Q-B., Lian, B-Y., Zhou, G. Approximation properties of λ-Bernstein operators, J. Ineq. and App. (2018) 2018:61.
  • Ditzian, Z., Totik, V. Moduli of Smoothness, Springer, New York, 1987.
  • Fast, H. Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
  • DeVore, R.A., Lorentz, G.G. Constructive Approximation, Springer, Berlin, 1993.
  • Gadjiev, A.D., Orhan, C. Some approximation properties via statistical convergence, Rocky Mountain J. Math., 32 (2002), 129-138.
  • Kadak, U. Weighted statistical convergence based on generalized difference operator involving (p,q)-gamma function and its applications to approximation theorems, J. Math. Anal. Appl., 448 (2017), 1663-1650.
  • Kadak, U., Braha, N.L., Srivastava, H.M. Statistical weighted B-summability and its applications to approximation theorems, Appl. Math. Comput., 302 (2017), 80-96.
  • Kajla, A., Ispir, N., Agrawal, P.N., Goyal, M. q- Bernstein-Schurer-Durrmeyer type operators for functions of one and two variables, Appl. Math. Comput., 275 (2016), 372-385.
  • Kanat, K., Sofyalıoglu, M. Some approximation results for (p, q)-Lupas-Schurer operators, Filomat, 32(1) (2018), 217-229.
  • Khan, K., Lobiyal, D.K. Beźier curves based on Lupaş (p, q)-analogue of Bernstein functions in CAGD, Journal of Computational and Applied Mathematics, 317 (2017), 458-477.
  • Mohiuddine, S.A., Alotaibi A., Hazarika B. Weighted A-statistical convergence for sequences of positive linear operators, Sci. World J., (2014) no. 437863.
  • Mohiuddine, S.A. Statistical weighted A-summability with application to Korovkin's type approximation theorem, J. Ineq. and App., (2016) 2018:101.
  • Orhan, S., Demirci, K. K_{a}-convergence and Korovkin type approximation, Periodica Mathematica Hungarica, 77(1) (2018), 108-118.
  • Ozarslan, M.A., Aktuğlu, H. Local approximation for certain King type operators, Filomat, (2013) 27(1), 173-181.
  • Özger, F. Weighted statistical approximation properties of univariate and bivariate λ-Kantorovich operators, Filomat, 33(11) (2019), 3473-3486.
  • Peetre, J. Theory of interpolation of normed spaces. Notas Mat. Rio de Janeiro, 39 (1963), 1-86.
  • Pop, O.T., Barbosu, D., Piscoran, L.I. Bezier type curves generated by some class of positive linear operators, Creat. Math. Inform., 19 (2010), 191-198.
  • Rahman, S., Mursaleen, M., Acu, A.M. Approximation properties of λ-Bernstein-Kantorovich operators with shifted knots, Mathematical Methods in the Applied Sciences, 42(11) (2019), 4042-4053.
  • Sever, Y., Talo, Ö. On statistical e-convergence of double sequences, Iranian Journal of Science and Technology, Transactions A: Science, 42(12) (2018), 1-6.
  • Schurer, F. Linear positive operators in approximation theory, Math. Inst. Techn. Univ. Delft:Report, 1962.
  • Srivastava, H.M., Özger, F., Mohiuddine, S.A. Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter λ, Symmetry, 11(3) (2019), Article 316.
  • Steinhaus, H. Sur la ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
  • Wafi, A., Rao, N. Bivariate-Schurer-Stancu operators based on (p;q)-integers, Filomat, 32(4) (2016), 1251-1258.
  • Winkel, R. On a generalization of Bernstein polynomials and Bezier curves based on umbral calculus, Computer Aided Geometric Design, 31(5) (2014), 227-244.
  • Ye, Z., Long, X., Zeng, X.-M. Adjustment algorithms for Bezier curve and surface, International Conference on Computer Science and Education, (2010) 1712-1716.
  • Yıldız, S., Dirik, F., Demirci, K. Korovkin type approximation theorem via K_{a}-convergence on weighted spaces, Mathematical Methods in the Applied Sciences, (2018) doi:10.1002/mma.5391.
  • Yıldız, S. Korovkin theorem via statistical e-modular convergence of double sequences, Sakarya University Journal of Science, 22(6) (2018), 1743-1751.
There are 32 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Faruk Özger 0000-0002-4135-2091

Publication Date June 30, 2020
Submission Date January 8, 2019
Acceptance Date November 6, 2019
Published in Issue Year 2020

Cite

APA Özger, F. (2020). On new Bézier bases with Schurer polynomials and corresponding results in approximation theory. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 376-393. https://doi.org/10.31801/cfsuasmas.510382
AMA Özger F. On new Bézier bases with Schurer polynomials and corresponding results in approximation theory. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):376-393. doi:10.31801/cfsuasmas.510382
Chicago Özger, Faruk. “On New Bézier Bases With Schurer Polynomials and Corresponding Results in Approximation Theory”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 376-93. https://doi.org/10.31801/cfsuasmas.510382.
EndNote Özger F (June 1, 2020) On new Bézier bases with Schurer polynomials and corresponding results in approximation theory. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 376–393.
IEEE F. Özger, “On new Bézier bases with Schurer polynomials and corresponding results in approximation theory”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 376–393, 2020, doi: 10.31801/cfsuasmas.510382.
ISNAD Özger, Faruk. “On New Bézier Bases With Schurer Polynomials and Corresponding Results in Approximation Theory”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 376-393. https://doi.org/10.31801/cfsuasmas.510382.
JAMA Özger F. On new Bézier bases with Schurer polynomials and corresponding results in approximation theory. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:376–393.
MLA Özger, Faruk. “On New Bézier Bases With Schurer Polynomials and Corresponding Results in Approximation Theory”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 376-93, doi:10.31801/cfsuasmas.510382.
Vancouver Özger F. On new Bézier bases with Schurer polynomials and corresponding results in approximation theory. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):376-93.

Cited By















Approximation by Szasz-Mirakjan-Durrmeyer operators based on shape parameter $\lambda$
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.941919







Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.