Research Article
BibTex RIS Cite

A Tychonoff theorem for graded ditopological texture spaces

Year 2020, , 193 - 212, 30.06.2020
https://doi.org/10.31801/cfsuasmas.567501

Abstract

In this paper, initial and product graded ditopologies are formulated and accordingly it is shown that
$\mathbf{dfGDitop}$ is topological over $\mathbf{dfTex}\times\mathbf{dfTex}$. By means of spectrum idea, (di)compactness in graded ditological texture
spaces is defined as a generalization of (di)compactness in ditopological case and its relation with the ditopological case is investigated. Moreover, using graded difilters, two characterizations of dicompactness of graded ditological texture spaces are obtained.

References

  • Ad\'{a}mek, J., Herrlich, H., Strecer, G. E., Abstract and Concrete Categories, John Wiley \& Sons, Inc., 1990.
  • Brown, L. M., Diker, M., Ditopological texture spaces and intuitionistic sets, \emph{Fuzzy Sets and Systems}, 98 (1998), 217--224.
  • Brown, L. M., Ert\"{u}rk, R., Fuzzy sets as texture spaces, I. Representation theorems, \emph{Fuzzy Sets and Systems}, 110 (2000), 227--236.
  • Brown, L. M., Ert\"{u}rk, R., Dost, \c{S}., Ditopological texture spaces and fuzzy topology, I. Basic concepts, \emph{Fuzzy Sets and Systems}, 147(2) (2004), 171--199.
  • Brown, L. M., Ert\"{u}rk, R., Dost, \c{S}., Ditopological texture spaces and fuzzy topology, II. Topological considerations, \emph{Fuzzy Sets and Systems}, 147(2) (2004), 201--231.
  • Brown, L. M., Ert\"{u}rk, R., Dost, \c{S}., Ditopological texture spaces and fuzzy topology, III. Separation Axioms, \emph{Fuzzy Sets and Systems}, 157(14) (2006), 1886--1912.
  • Brown, L. M., Gohar, M. M., Compactness in ditopological texture spaces, \emph{Hacettepe Journal of Mathematics and Statistics}, 38(1) (2009), 21--43.
  • Brown, L. M., {\v S}ostak, A. P., Categories of fuzzy topology in the context of graded ditopologies on textures, \emph{Iranian Journal of Fuzzy Systems}, 11(6) (2014), 1--20.
  • Ekmek\c{c}i, R., Graded ditopological texture spaces, Phd Thesis, \c{C}anakkale Onsekiz Mart University, \c{C}anakkale, Turkey, 2016.
  • Ekmek\c{c}i, R., Ert\"{u}rk, R., Convergence in graded ditopological texture spaces, \emph{Applied General Topology}, 17(1) (2016), 17--35.
  • Kubiak, T., On fuzzy topologies, PhD Thesis, A. Mickiewicz University Poznan, Poland, 1985.
  • {\v S}ostak, A. P., On a fuzzy topological structure, \emph{Rendiconti Circolo Matematico Palermo Serie II}, 11 (1985), 89--103.
  • {\v S}ostak, A. P., On compactness and connectedness degrees of fuzzy topological spaces, \emph{General Topology and its Relations to Modern Analysis and Algebra}, Heldermann Verlag, Berlin (1988), 519--532.
  • {\v S}ostak, A. P., Two decates of fuzzy topology: basic ideas, notions and results, \emph{Russian Math. Surveys}, 44(6) (1989), 125--186.
  • \"{O}z\c{c}a\u{g}, S., Y{\i}ld{\i}z, F., Brown, L. M., Convergence of regular difilters and the completeness of di-uniformities, \emph{Hacettepe Journal of Mathematics and Statistics}, 34(S) (2005), 53--68.
  • Y{\i}ld{\i}z, G., Ditopological spaces on texture spaces, MSc Thesis, Hacettepe University, Ankara, Turkey, 2005.
Year 2020, , 193 - 212, 30.06.2020
https://doi.org/10.31801/cfsuasmas.567501

Abstract

References

  • Ad\'{a}mek, J., Herrlich, H., Strecer, G. E., Abstract and Concrete Categories, John Wiley \& Sons, Inc., 1990.
  • Brown, L. M., Diker, M., Ditopological texture spaces and intuitionistic sets, \emph{Fuzzy Sets and Systems}, 98 (1998), 217--224.
  • Brown, L. M., Ert\"{u}rk, R., Fuzzy sets as texture spaces, I. Representation theorems, \emph{Fuzzy Sets and Systems}, 110 (2000), 227--236.
  • Brown, L. M., Ert\"{u}rk, R., Dost, \c{S}., Ditopological texture spaces and fuzzy topology, I. Basic concepts, \emph{Fuzzy Sets and Systems}, 147(2) (2004), 171--199.
  • Brown, L. M., Ert\"{u}rk, R., Dost, \c{S}., Ditopological texture spaces and fuzzy topology, II. Topological considerations, \emph{Fuzzy Sets and Systems}, 147(2) (2004), 201--231.
  • Brown, L. M., Ert\"{u}rk, R., Dost, \c{S}., Ditopological texture spaces and fuzzy topology, III. Separation Axioms, \emph{Fuzzy Sets and Systems}, 157(14) (2006), 1886--1912.
  • Brown, L. M., Gohar, M. M., Compactness in ditopological texture spaces, \emph{Hacettepe Journal of Mathematics and Statistics}, 38(1) (2009), 21--43.
  • Brown, L. M., {\v S}ostak, A. P., Categories of fuzzy topology in the context of graded ditopologies on textures, \emph{Iranian Journal of Fuzzy Systems}, 11(6) (2014), 1--20.
  • Ekmek\c{c}i, R., Graded ditopological texture spaces, Phd Thesis, \c{C}anakkale Onsekiz Mart University, \c{C}anakkale, Turkey, 2016.
  • Ekmek\c{c}i, R., Ert\"{u}rk, R., Convergence in graded ditopological texture spaces, \emph{Applied General Topology}, 17(1) (2016), 17--35.
  • Kubiak, T., On fuzzy topologies, PhD Thesis, A. Mickiewicz University Poznan, Poland, 1985.
  • {\v S}ostak, A. P., On a fuzzy topological structure, \emph{Rendiconti Circolo Matematico Palermo Serie II}, 11 (1985), 89--103.
  • {\v S}ostak, A. P., On compactness and connectedness degrees of fuzzy topological spaces, \emph{General Topology and its Relations to Modern Analysis and Algebra}, Heldermann Verlag, Berlin (1988), 519--532.
  • {\v S}ostak, A. P., Two decates of fuzzy topology: basic ideas, notions and results, \emph{Russian Math. Surveys}, 44(6) (1989), 125--186.
  • \"{O}z\c{c}a\u{g}, S., Y{\i}ld{\i}z, F., Brown, L. M., Convergence of regular difilters and the completeness of di-uniformities, \emph{Hacettepe Journal of Mathematics and Statistics}, 34(S) (2005), 53--68.
  • Y{\i}ld{\i}z, G., Ditopological spaces on texture spaces, MSc Thesis, Hacettepe University, Ankara, Turkey, 2005.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Ramazan Ekmekçi 0000-0001-6496-7358

Publication Date June 30, 2020
Submission Date May 19, 2019
Acceptance Date October 4, 2019
Published in Issue Year 2020

Cite

APA Ekmekçi, R. (2020). A Tychonoff theorem for graded ditopological texture spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 193-212. https://doi.org/10.31801/cfsuasmas.567501
AMA Ekmekçi R. A Tychonoff theorem for graded ditopological texture spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):193-212. doi:10.31801/cfsuasmas.567501
Chicago Ekmekçi, Ramazan. “A Tychonoff Theorem for Graded Ditopological Texture Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 193-212. https://doi.org/10.31801/cfsuasmas.567501.
EndNote Ekmekçi R (June 1, 2020) A Tychonoff theorem for graded ditopological texture spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 193–212.
IEEE R. Ekmekçi, “A Tychonoff theorem for graded ditopological texture spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 193–212, 2020, doi: 10.31801/cfsuasmas.567501.
ISNAD Ekmekçi, Ramazan. “A Tychonoff Theorem for Graded Ditopological Texture Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 193-212. https://doi.org/10.31801/cfsuasmas.567501.
JAMA Ekmekçi R. A Tychonoff theorem for graded ditopological texture spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:193–212.
MLA Ekmekçi, Ramazan. “A Tychonoff Theorem for Graded Ditopological Texture Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 193-12, doi:10.31801/cfsuasmas.567501.
Vancouver Ekmekçi R. A Tychonoff theorem for graded ditopological texture spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):193-212.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.