Research Article
BibTex RIS Cite

On the K_{a}-continuity of real functions

Year 2020, , 540 - 546, 30.06.2020
https://doi.org/10.31801/cfsuasmas.569892

Abstract

The aim of the present paper is to define K_{a}-continuity which is associated to the number sequence a=(a_{n}) and to give some new results.

References

  • Aczel, J., Vorlesungen über Funktionalgleichungen und ihre Anwendungen, VEB Deutsch. Verlag der Wissenschaften, Berlin, 1961.
  • Antoni, J., On the A-continuity of real functions II, Math. Slovaca 36 (1986), 283-288.
  • Antoni, J., Salat, T., On the A-continuity of real functions, Acta Math. Univ. Comenian. 39 (1980), 159-164.
  • Borsik, J., Salat, T., On F-continuity of real functions, Tatra Mountains Math. Publ., 2 (1993), 37-42.
  • Boos, J., Classical and modern in summability, Oxford Science Publications, 2000.
  • Hardy, G. H., Divergent series, Oxford Univ. Press, London, 1949.
  • Lazic, M., Jovovic, V., Cauchy's operators and convergence methods, Univ. Beograd. Publ. Elektrothen Fak. 4 (1993), 81-87.
  • Lorentz, G. G., A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
  • Robbins, H., Problem 4216, Amer. Math. Monthly, 53 (1946), 470-471.
  • Problem 4216 (1946, 470) Amer. Math. Monthly, Propesed H. Robins. Solution by R. c. Buck, Amer. Math. Monthly 55 (1948) 36.
  • Öztürk, E., On almost continuity and almost A-continuity of real functions, Comm. Fac. Sci. Univ. Ankara, Ser. A, 32 (1983), 25-30.
  • Posner, E. C., Summability preserving functions, Proc. Amer. Math. Soc., 12 (1961), 73-76.
  • Savaş, E., Das, G., On the A-continuity of real functions, istanbul Üniv. Fen. Fak. Mat. Der., 53 (1994), 61-66.
Year 2020, , 540 - 546, 30.06.2020
https://doi.org/10.31801/cfsuasmas.569892

Abstract

References

  • Aczel, J., Vorlesungen über Funktionalgleichungen und ihre Anwendungen, VEB Deutsch. Verlag der Wissenschaften, Berlin, 1961.
  • Antoni, J., On the A-continuity of real functions II, Math. Slovaca 36 (1986), 283-288.
  • Antoni, J., Salat, T., On the A-continuity of real functions, Acta Math. Univ. Comenian. 39 (1980), 159-164.
  • Borsik, J., Salat, T., On F-continuity of real functions, Tatra Mountains Math. Publ., 2 (1993), 37-42.
  • Boos, J., Classical and modern in summability, Oxford Science Publications, 2000.
  • Hardy, G. H., Divergent series, Oxford Univ. Press, London, 1949.
  • Lazic, M., Jovovic, V., Cauchy's operators and convergence methods, Univ. Beograd. Publ. Elektrothen Fak. 4 (1993), 81-87.
  • Lorentz, G. G., A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
  • Robbins, H., Problem 4216, Amer. Math. Monthly, 53 (1946), 470-471.
  • Problem 4216 (1946, 470) Amer. Math. Monthly, Propesed H. Robins. Solution by R. c. Buck, Amer. Math. Monthly 55 (1948) 36.
  • Öztürk, E., On almost continuity and almost A-continuity of real functions, Comm. Fac. Sci. Univ. Ankara, Ser. A, 32 (1983), 25-30.
  • Posner, E. C., Summability preserving functions, Proc. Amer. Math. Soc., 12 (1961), 73-76.
  • Savaş, E., Das, G., On the A-continuity of real functions, istanbul Üniv. Fen. Fak. Mat. Der., 53 (1994), 61-66.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Sevda Yıldız 0000-0002-4730-2271

Kamil Demirci 0000-0002-5976-9768

Fadime Dirik 0000-0002-9316-9037

Publication Date June 30, 2020
Submission Date May 24, 2019
Acceptance Date December 8, 2019
Published in Issue Year 2020

Cite

APA Yıldız, S., Demirci, K., & Dirik, F. (2020). On the K_{a}-continuity of real functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 540-546. https://doi.org/10.31801/cfsuasmas.569892
AMA Yıldız S, Demirci K, Dirik F. On the K_{a}-continuity of real functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):540-546. doi:10.31801/cfsuasmas.569892
Chicago Yıldız, Sevda, Kamil Demirci, and Fadime Dirik. “On the K_{a}-Continuity of Real Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 540-46. https://doi.org/10.31801/cfsuasmas.569892.
EndNote Yıldız S, Demirci K, Dirik F (June 1, 2020) On the K_{a}-continuity of real functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 540–546.
IEEE S. Yıldız, K. Demirci, and F. Dirik, “On the K_{a}-continuity of real functions”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 540–546, 2020, doi: 10.31801/cfsuasmas.569892.
ISNAD Yıldız, Sevda et al. “On the K_{a}-Continuity of Real Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 540-546. https://doi.org/10.31801/cfsuasmas.569892.
JAMA Yıldız S, Demirci K, Dirik F. On the K_{a}-continuity of real functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:540–546.
MLA Yıldız, Sevda et al. “On the K_{a}-Continuity of Real Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 540-6, doi:10.31801/cfsuasmas.569892.
Vancouver Yıldız S, Demirci K, Dirik F. On the K_{a}-continuity of real functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):540-6.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.