BibTex RIS Cite

SOME PROPERTIES OF RICKART MODULES

Year 2012, , 1 - 8, 01.08.2012
https://doi.org/10.1501/Commua1_0000000675

References

  • N. Agayev, S. Halicioglu and A. Harmanci, On Rickart modules, Bulletin of the Iranian Mathematical Society, 38(2) (2012), 433-445.
  • N. Agayev, T. Ozen and A. Harmanci, On a Class of Semicommutative Modules, Proc. Indian Acad. Sci. 119(2009), 149-158.
  • I. Kaplansky, Rings of Operators, Math. Lecture Note Series, Benjamin, New York, 1965.
  • J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14(1971), 359-368.
  • G. Lee, S. T. Rizvi and C. S. Roman, Rickart Modules, Comm. Algebra 38(11)2010, 4005- 4027.
  • M. B. Rege and S. Chhawchharia, Armendariz Rings, Proc. Japan Acad. Ser. A Math. Sci. 73(1997), 14-17.
  • S. T. Rizvi and C. S. Roman, Baer and Quasi-Baer Modules, Comm. Algebra 32(2004), 103-123.
  • S. T. Rizvi and C. S. Roman, On direct sums of Baer modules, J. Algebra 321(2009), 682-696.
  • H. Tansee and S. Wongwai, A note on semi-projective modules, Kyungpook Math. J. 42(2002), 369-380.
Year 2012, , 1 - 8, 01.08.2012
https://doi.org/10.1501/Commua1_0000000675

References

  • N. Agayev, S. Halicioglu and A. Harmanci, On Rickart modules, Bulletin of the Iranian Mathematical Society, 38(2) (2012), 433-445.
  • N. Agayev, T. Ozen and A. Harmanci, On a Class of Semicommutative Modules, Proc. Indian Acad. Sci. 119(2009), 149-158.
  • I. Kaplansky, Rings of Operators, Math. Lecture Note Series, Benjamin, New York, 1965.
  • J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14(1971), 359-368.
  • G. Lee, S. T. Rizvi and C. S. Roman, Rickart Modules, Comm. Algebra 38(11)2010, 4005- 4027.
  • M. B. Rege and S. Chhawchharia, Armendariz Rings, Proc. Japan Acad. Ser. A Math. Sci. 73(1997), 14-17.
  • S. T. Rizvi and C. S. Roman, Baer and Quasi-Baer Modules, Comm. Algebra 32(2004), 103-123.
  • S. T. Rizvi and C. S. Roman, On direct sums of Baer modules, J. Algebra 321(2009), 682-696.
  • H. Tansee and S. Wongwai, A note on semi-projective modules, Kyungpook Math. J. 42(2002), 369-380.
There are 9 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

B. Üngör This is me

G. Kafkas This is me

S. Halıcıoğlu This is me

A. Harmancı This is me

Publication Date August 1, 2012
Published in Issue Year 2012

Cite

APA Üngör, B., Kafkas, G., Halıcıoğlu, S., Harmancı, A. (2012). SOME PROPERTIES OF RICKART MODULES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 61(2), 1-8. https://doi.org/10.1501/Commua1_0000000675
AMA Üngör B, Kafkas G, Halıcıoğlu S, Harmancı A. SOME PROPERTIES OF RICKART MODULES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2012;61(2):1-8. doi:10.1501/Commua1_0000000675
Chicago Üngör, B., G. Kafkas, S. Halıcıoğlu, and A. Harmancı. “SOME PROPERTIES OF RICKART MODULES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 61, no. 2 (August 2012): 1-8. https://doi.org/10.1501/Commua1_0000000675.
EndNote Üngör B, Kafkas G, Halıcıoğlu S, Harmancı A (August 1, 2012) SOME PROPERTIES OF RICKART MODULES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 61 2 1–8.
IEEE B. Üngör, G. Kafkas, S. Halıcıoğlu, and A. Harmancı, “SOME PROPERTIES OF RICKART MODULES”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 61, no. 2, pp. 1–8, 2012, doi: 10.1501/Commua1_0000000675.
ISNAD Üngör, B. et al. “SOME PROPERTIES OF RICKART MODULES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 61/2 (August 2012), 1-8. https://doi.org/10.1501/Commua1_0000000675.
JAMA Üngör B, Kafkas G, Halıcıoğlu S, Harmancı A. SOME PROPERTIES OF RICKART MODULES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2012;61:1–8.
MLA Üngör, B. et al. “SOME PROPERTIES OF RICKART MODULES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 61, no. 2, 2012, pp. 1-8, doi:10.1501/Commua1_0000000675.
Vancouver Üngör B, Kafkas G, Halıcıoğlu S, Harmancı A. SOME PROPERTIES OF RICKART MODULES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2012;61(2):1-8.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.