BibTex RIS Cite

Some results in semiprime rings with derivation

Year 2013, , 11 - 20, 01.02.2013
https://doi.org/10.1501/Commua1_0000000682

Abstract

References

  • A. Ali, M. Yasen and M. Anwar, Strong commutativity preserving mappings on semiprime rings, Bull. Korean Math. Soc., 2006, 43(4), 711-713.
  • E. C. Posner, Derivations in prime rings, Proc. Amer. Soc., 1957, 8, 1093-1100.
  • H. E. Bell, M. N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull., 1994, 37(4), 443-447.
  • H. E. Bell, L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungarica, 1989, 53, 339-346, .
  • H. E. Bell, W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull., , 30 (1), 92-101. I.N. Herstein, Rings with involution, The University of Chicago Press, Illinois, 1976.
  • J. Ma, X. W. Xu, Strong commutativity-preserving generalized derivations on on semiprime rings, Acta Math. Sinica, English Series, 2008, 24(11), 1835-1842.
  • M. Bresar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings,. Trans. Amer. Math. Soc., 1993, 335(2), 525-546.
  • M. N. Daif, H. E. Bell, Remarks on derivations on semiprime rings, Internat J. Math. Math. Sci., 1992, 15(1), 205-206.
  • M.S. Samman, On strong commutativity-preserving maps, Internat J. Math. Math. Sci., 2005, , 917-923.
  • N. Argaç, On prime and semiprime rings with derivations, Algebra Colloq., 2006, 13(3), 380.

Some results in semiprime rings with derivation

Year 2013, , 11 - 20, 01.02.2013
https://doi.org/10.1501/Commua1_0000000682

Abstract

Let R be a semiprime ring and S be a nonempty subset of R: A
mapping F from R to R is called centralizing on S if [F(x); x] 2 Z for all
x 2 S. The mapping F is called strong commutativity preserving (SCP) on
S if [F(x); F(y)] = [x; y] for all x; y 2 S: In the present paper, we investigate
some relationships between centralizing derivations and SCP-derivations of
semiprime rings. Also, we study centralizing properties derivation which acts
homomorphism or anti-homomorphism in semiprime rin

References

  • A. Ali, M. Yasen and M. Anwar, Strong commutativity preserving mappings on semiprime rings, Bull. Korean Math. Soc., 2006, 43(4), 711-713.
  • E. C. Posner, Derivations in prime rings, Proc. Amer. Soc., 1957, 8, 1093-1100.
  • H. E. Bell, M. N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull., 1994, 37(4), 443-447.
  • H. E. Bell, L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungarica, 1989, 53, 339-346, .
  • H. E. Bell, W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull., , 30 (1), 92-101. I.N. Herstein, Rings with involution, The University of Chicago Press, Illinois, 1976.
  • J. Ma, X. W. Xu, Strong commutativity-preserving generalized derivations on on semiprime rings, Acta Math. Sinica, English Series, 2008, 24(11), 1835-1842.
  • M. Bresar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings,. Trans. Amer. Math. Soc., 1993, 335(2), 525-546.
  • M. N. Daif, H. E. Bell, Remarks on derivations on semiprime rings, Internat J. Math. Math. Sci., 1992, 15(1), 205-206.
  • M.S. Samman, On strong commutativity-preserving maps, Internat J. Math. Math. Sci., 2005, , 917-923.
  • N. Argaç, On prime and semiprime rings with derivations, Algebra Colloq., 2006, 13(3), 380.
There are 10 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Emine Koç This is me

Publication Date February 1, 2013
Published in Issue Year 2013

Cite

APA Koç, E. (2013). Some results in semiprime rings with derivation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 62(1), 11-20. https://doi.org/10.1501/Commua1_0000000682
AMA Koç E. Some results in semiprime rings with derivation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2013;62(1):11-20. doi:10.1501/Commua1_0000000682
Chicago Koç, Emine. “Some Results in Semiprime Rings With Derivation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62, no. 1 (February 2013): 11-20. https://doi.org/10.1501/Commua1_0000000682.
EndNote Koç E (February 1, 2013) Some results in semiprime rings with derivation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62 1 11–20.
IEEE E. Koç, “Some results in semiprime rings with derivation”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 62, no. 1, pp. 11–20, 2013, doi: 10.1501/Commua1_0000000682.
ISNAD Koç, Emine. “Some Results in Semiprime Rings With Derivation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62/1 (February 2013), 11-20. https://doi.org/10.1501/Commua1_0000000682.
JAMA Koç E. Some results in semiprime rings with derivation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2013;62:11–20.
MLA Koç, Emine. “Some Results in Semiprime Rings With Derivation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 62, no. 1, 2013, pp. 11-20, doi:10.1501/Commua1_0000000682.
Vancouver Koç E. Some results in semiprime rings with derivation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2013;62(1):11-20.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.