BibTex RIS Cite

On the spaces of Euler almost null and Euler almost convergent sequences

Year 2013, , 85 - 100, 01.02.2013
https://doi.org/10.1501/Commua1_0000000688

References

  • A.M. Al-Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo (2)52, Vol. I (1998), 177–191.
  • B. Altay, F. Ba¸sar, On some Euler sequence spaces of non-absolute type, Ukrainian Math. J. (1)(2005), 1–17.
  • B. Altay, F. Ba¸sar, M. Mursaleen, On the Euler sequence spaces which include the spaces `p and `1I, Inform. Sci. 176(10)(2006), 1450–1462.
  • B. Altay, H. Polat, On some new Euler diğ erence sequence spaces, Southeast Asian Bull. Math. 30 (2006), no. 2, 209–220.
  • F. Ba¸sar, f -conservative matrix sequences, Tamkang J. Math. 22(2)(1991), 205–212
  • F. Ba¸sar, Summability Theory and Its Applications, Bentham Science Publ., e-books, Mono- graphs, ·Istanbul, 2012.
  • F. Ba¸sar,R. Çolak,Almost-conservative matrix transformations,Turkish J. Math. (3)(1989), 91–100.
  • F. Ba¸sar, M. Kiri¸sçi, Almost convergence and generalized diğ erence matrix, Comput. Math. Appl. 61(3)(2011), 602–611. · I. (7)11(2)(1991), 249–256. matrix transformations, Rend. Mat. Appl.
  • M. Ba¸sarır, M. Kayıkçı, On the generalized Bm-Riesz sequence space and property, J. Inequal. Appl. (2009), Article ID 385029, 18 pp.
  • S. Demiriz, C. Çakan, On some new paranormed Euler sequence spaces and Euler core, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 7, 1207–1222.
  • I. Djolovi´c, E. Malkowsky, Characterizations of compact operators on some Euler spaces of diğ erence sequences of order m., Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 4, 1465–
  • J.P. Duran, In…nite matrices and almost convergence, Math. Z. 128(1972), 75–83.
  • P.K. Kampthan, M. Gupta, Sequence Spaces and Series, Marcel Dekker Inc., New York, Basel, 1981.
  • E.E. Kara, M. Öztürk, M. Ba¸sarır, Some topological and geometric properties of generalized Euler sequence space, Math. Slovaca 60 (2010), no. 3, 385–398.
  • E.E. Kara, M. Ba¸sarır, On compact operators and some Euler B(m)-diğ erence sequence spaces, J. Math. Anal. Appl. 379 (2011), no. 2, 499–511.
  • V. Karakaya, H. Polat, Some new paranormed sequence spaces de…ned by Euler and diğ erence operators, Acta Sci. Math. (Szeged) 76(2010), 87–100.
  • J.P. King, Almost summable sequences, Proc. Amer. Math. Soc. 17(1966), 1219–1225.
  • G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80(1948), –190.
  • I.J. Maddox, On theorems of Steinhaus theorems, J. London Math. Soc. 42 (1967), 239–244.
  • H.I. Miller, C. Orhan, On almost convergent and statistically convergent subsequences, Acta Math. Hungar. 93(2001), 135–151.
  • M. Mursaleen, F. Ba¸sar, B. Altay, On the Euler sequence spaces which include the spaces `p and `1II, Nonlinear Anal. 65(3)(2006), 707–717.
  • E. Öztürk, On strongly regular dual summability methods, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 32(1983), 1–5.
  • H. Polat, F. Ba¸sar, Some Euler spaces of diğ erence sequences of order m, Acta Math. Sci., Ser. B, Engl. Ed. 27B(2)(2007), 254–266.
  • J.A. Sıddıqi, In…nite matrices summing every almost periodic sequences, Pac. J. Math. (1)(1971) 235–251.
  • A. Sönmez, Almost convergence and triple band matrix, Math. and Comp. Modelling 57 (9–10) (2013), 2393–2402.
  • Current address : Murat Kiri¸sci; Department of Mathematical Education, Hasan Ali Yücel Education Faculty, ·Istanbul University, Vefa, 34470, Fatih, ·Istanbul, TURKEY murat.kirisci@istanbul.edu.tr E-mail address
  • URL: http://communications.science.ankara.edu.tr/index.php?series=A1

On the spaces of Euler almost null and Euler almost convergent sequences

Year 2013, , 85 - 100, 01.02.2013
https://doi.org/10.1501/Commua1_0000000688

References

  • A.M. Al-Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo (2)52, Vol. I (1998), 177–191.
  • B. Altay, F. Ba¸sar, On some Euler sequence spaces of non-absolute type, Ukrainian Math. J. (1)(2005), 1–17.
  • B. Altay, F. Ba¸sar, M. Mursaleen, On the Euler sequence spaces which include the spaces `p and `1I, Inform. Sci. 176(10)(2006), 1450–1462.
  • B. Altay, H. Polat, On some new Euler diğ erence sequence spaces, Southeast Asian Bull. Math. 30 (2006), no. 2, 209–220.
  • F. Ba¸sar, f -conservative matrix sequences, Tamkang J. Math. 22(2)(1991), 205–212
  • F. Ba¸sar, Summability Theory and Its Applications, Bentham Science Publ., e-books, Mono- graphs, ·Istanbul, 2012.
  • F. Ba¸sar,R. Çolak,Almost-conservative matrix transformations,Turkish J. Math. (3)(1989), 91–100.
  • F. Ba¸sar, M. Kiri¸sçi, Almost convergence and generalized diğ erence matrix, Comput. Math. Appl. 61(3)(2011), 602–611. · I. (7)11(2)(1991), 249–256. matrix transformations, Rend. Mat. Appl.
  • M. Ba¸sarır, M. Kayıkçı, On the generalized Bm-Riesz sequence space and property, J. Inequal. Appl. (2009), Article ID 385029, 18 pp.
  • S. Demiriz, C. Çakan, On some new paranormed Euler sequence spaces and Euler core, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 7, 1207–1222.
  • I. Djolovi´c, E. Malkowsky, Characterizations of compact operators on some Euler spaces of diğ erence sequences of order m., Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 4, 1465–
  • J.P. Duran, In…nite matrices and almost convergence, Math. Z. 128(1972), 75–83.
  • P.K. Kampthan, M. Gupta, Sequence Spaces and Series, Marcel Dekker Inc., New York, Basel, 1981.
  • E.E. Kara, M. Öztürk, M. Ba¸sarır, Some topological and geometric properties of generalized Euler sequence space, Math. Slovaca 60 (2010), no. 3, 385–398.
  • E.E. Kara, M. Ba¸sarır, On compact operators and some Euler B(m)-diğ erence sequence spaces, J. Math. Anal. Appl. 379 (2011), no. 2, 499–511.
  • V. Karakaya, H. Polat, Some new paranormed sequence spaces de…ned by Euler and diğ erence operators, Acta Sci. Math. (Szeged) 76(2010), 87–100.
  • J.P. King, Almost summable sequences, Proc. Amer. Math. Soc. 17(1966), 1219–1225.
  • G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80(1948), –190.
  • I.J. Maddox, On theorems of Steinhaus theorems, J. London Math. Soc. 42 (1967), 239–244.
  • H.I. Miller, C. Orhan, On almost convergent and statistically convergent subsequences, Acta Math. Hungar. 93(2001), 135–151.
  • M. Mursaleen, F. Ba¸sar, B. Altay, On the Euler sequence spaces which include the spaces `p and `1II, Nonlinear Anal. 65(3)(2006), 707–717.
  • E. Öztürk, On strongly regular dual summability methods, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 32(1983), 1–5.
  • H. Polat, F. Ba¸sar, Some Euler spaces of diğ erence sequences of order m, Acta Math. Sci., Ser. B, Engl. Ed. 27B(2)(2007), 254–266.
  • J.A. Sıddıqi, In…nite matrices summing every almost periodic sequences, Pac. J. Math. (1)(1971) 235–251.
  • A. Sönmez, Almost convergence and triple band matrix, Math. and Comp. Modelling 57 (9–10) (2013), 2393–2402.
  • Current address : Murat Kiri¸sci; Department of Mathematical Education, Hasan Ali Yücel Education Faculty, ·Istanbul University, Vefa, 34470, Fatih, ·Istanbul, TURKEY murat.kirisci@istanbul.edu.tr E-mail address
  • URL: http://communications.science.ankara.edu.tr/index.php?series=A1
There are 27 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Murat Kirişçi This is me

Publication Date February 1, 2013
Published in Issue Year 2013

Cite

APA Kirişçi, M. (2013). On the spaces of Euler almost null and Euler almost convergent sequences. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 62(1), 85-100. https://doi.org/10.1501/Commua1_0000000688
AMA Kirişçi M. On the spaces of Euler almost null and Euler almost convergent sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2013;62(1):85-100. doi:10.1501/Commua1_0000000688
Chicago Kirişçi, Murat. “On the Spaces of Euler Almost Null and Euler Almost Convergent Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62, no. 1 (February 2013): 85-100. https://doi.org/10.1501/Commua1_0000000688.
EndNote Kirişçi M (February 1, 2013) On the spaces of Euler almost null and Euler almost convergent sequences. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62 1 85–100.
IEEE M. Kirişçi, “On the spaces of Euler almost null and Euler almost convergent sequences”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 62, no. 1, pp. 85–100, 2013, doi: 10.1501/Commua1_0000000688.
ISNAD Kirişçi, Murat. “On the Spaces of Euler Almost Null and Euler Almost Convergent Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62/1 (February 2013), 85-100. https://doi.org/10.1501/Commua1_0000000688.
JAMA Kirişçi M. On the spaces of Euler almost null and Euler almost convergent sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2013;62:85–100.
MLA Kirişçi, Murat. “On the Spaces of Euler Almost Null and Euler Almost Convergent Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 62, no. 1, 2013, pp. 85-100, doi:10.1501/Commua1_0000000688.
Vancouver Kirişçi M. On the spaces of Euler almost null and Euler almost convergent sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2013;62(1):85-100.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.