[2] I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford (2) 18 (1967), 345ñ355.
[3] S. Simons, The sequence spaces `(pv) and m(pv), Proc. London Math. Soc. (3), 15 (1965), 422ñ436.
[4] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (2) (1951), 508ñ512.
[5] A.M. Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rendiconti Circ. Mat. Palermo II 52 (1990), 177ñ191.
[6] B. Altay, F. Ba¸sar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26 (5) (2002), 701ñ715.
[7] S. Chen, Geometry of Orlicz Spaces, Dissertationes Math. 356 (1996), 1ñ224.
[8] J. Diestel, Geometry of Banach Spaces - Selected Topics, Springer - Verlag, 1984.
[9] L. Maligranda, Orlicz Spaces and Interpolation, Inst. Math. Polish Academy of Sciences, Poznan,1985.
[10] C. Ayd¨n, F. Ba¸sar, Some generalizations of the sequence space a r p , Iran. J. Sci. Technol. Trans. A, Sci. 30 (2006), No. A2, 175ñ190.
[11] C. Ayd¨n, F. Ba¸sar, Some topological and geometric properties of the domain of the generalized di§ erence matrix B(r; s) in the sequence space `(p), Thai J. Math. 12 (1) (2014), 113ñ132.
[12] F. Ba¸sar, B. Altay, M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Anal. 68 (2) (2008), 273ñ287.
[13] H. Nergiz, F. Ba¸sar, Some topological and geometric properties of the domain of the double sequential band matrix B(r; e se) in the sequence space `(p), AIP Conference Proceedings 1470 (2012), 163ñ168, doi: 10.1063/1.4747665.
[14] H. Nergiz, F. Ba¸sar, Some geometric properties of the domain of the double sequential band matrix B(r; e se) in the sequence space `(p), Abstr. Appl. Anal. 2013, Article ID 421031, 7 pages, 2013. doi: 10.1155/2013/421031.
[15] E. UÁar, F. Ba¸sar, Some geometric properties of the domain of the double band matrix deÖned by Fibonacci numbers in the sequence space `(p), AIP Conference Proceedings 1611 (2014), 316ñ324, doi: 10.1063/1.4893854.
[16] M. Ye¸silkayagil, F. Ba¸sar, On the paranormed Nˆrlund sequence space of non-absolute type, Abstr. Appl. Anal. 2014, Article ID 858704, 9 pages, 2014. doi:10.1155/2014/858704.
[17] E.E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl. 2013, 15 pages, 2013. doi:10.1186/1029-242X-2013-38.
[18] M. Ba¸sar¨r, F. Ba¸sar, E.E. Kara, On the spaces of Fibonacci di§ erence null and convergent sequences, arXiv:1309.0150v1 [math.FA], (2013).
[2] I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford (2) 18 (1967), 345ñ355.
[3] S. Simons, The sequence spaces `(pv) and m(pv), Proc. London Math. Soc. (3), 15 (1965), 422ñ436.
[4] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (2) (1951), 508ñ512.
[5] A.M. Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rendiconti Circ. Mat. Palermo II 52 (1990), 177ñ191.
[6] B. Altay, F. Ba¸sar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26 (5) (2002), 701ñ715.
[7] S. Chen, Geometry of Orlicz Spaces, Dissertationes Math. 356 (1996), 1ñ224.
[8] J. Diestel, Geometry of Banach Spaces - Selected Topics, Springer - Verlag, 1984.
[9] L. Maligranda, Orlicz Spaces and Interpolation, Inst. Math. Polish Academy of Sciences, Poznan,1985.
[10] C. Ayd¨n, F. Ba¸sar, Some generalizations of the sequence space a r p , Iran. J. Sci. Technol. Trans. A, Sci. 30 (2006), No. A2, 175ñ190.
[11] C. Ayd¨n, F. Ba¸sar, Some topological and geometric properties of the domain of the generalized di§ erence matrix B(r; s) in the sequence space `(p), Thai J. Math. 12 (1) (2014), 113ñ132.
[12] F. Ba¸sar, B. Altay, M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Anal. 68 (2) (2008), 273ñ287.
[13] H. Nergiz, F. Ba¸sar, Some topological and geometric properties of the domain of the double sequential band matrix B(r; e se) in the sequence space `(p), AIP Conference Proceedings 1470 (2012), 163ñ168, doi: 10.1063/1.4747665.
[14] H. Nergiz, F. Ba¸sar, Some geometric properties of the domain of the double sequential band matrix B(r; e se) in the sequence space `(p), Abstr. Appl. Anal. 2013, Article ID 421031, 7 pages, 2013. doi: 10.1155/2013/421031.
[15] E. UÁar, F. Ba¸sar, Some geometric properties of the domain of the double band matrix deÖned by Fibonacci numbers in the sequence space `(p), AIP Conference Proceedings 1611 (2014), 316ñ324, doi: 10.1063/1.4893854.
[16] M. Ye¸silkayagil, F. Ba¸sar, On the paranormed Nˆrlund sequence space of non-absolute type, Abstr. Appl. Anal. 2014, Article ID 858704, 9 pages, 2014. doi:10.1155/2014/858704.
[17] E.E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl. 2013, 15 pages, 2013. doi:10.1186/1029-242X-2013-38.
[18] M. Ba¸sar¨r, F. Ba¸sar, E.E. Kara, On the spaces of Fibonacci di§ erence null and convergent sequences, arXiv:1309.0150v1 [math.FA], (2013).
Yılmaz, E. S., & Başar, F. (2014). SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE e A IN THE SEQUENCE SPACE `(p). Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 63(2), 163-176. https://doi.org/10.1501/Commua1_0000000721
AMA
Yılmaz ES, Başar F. SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE e A IN THE SEQUENCE SPACE `(p). Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2014;63(2):163-176. doi:10.1501/Commua1_0000000721
Chicago
Yılmaz, Esra Sümeyra, and Feyzi Başar. “SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE E A IN THE SEQUENCE SPACE `(p)”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63, no. 2 (August 2014): 163-76. https://doi.org/10.1501/Commua1_0000000721.
EndNote
Yılmaz ES, Başar F (August 1, 2014) SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE e A IN THE SEQUENCE SPACE `(p). Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63 2 163–176.
IEEE
E. S. Yılmaz and F. Başar, “SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE e A IN THE SEQUENCE SPACE `(p)”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 63, no. 2, pp. 163–176, 2014, doi: 10.1501/Commua1_0000000721.
ISNAD
Yılmaz, Esra Sümeyra - Başar, Feyzi. “SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE E A IN THE SEQUENCE SPACE `(p)”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63/2 (August 2014), 163-176. https://doi.org/10.1501/Commua1_0000000721.
JAMA
Yılmaz ES, Başar F. SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE e A IN THE SEQUENCE SPACE `(p). Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2014;63:163–176.
MLA
Yılmaz, Esra Sümeyra and Feyzi Başar. “SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE E A IN THE SEQUENCE SPACE `(p)”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 63, no. 2, 2014, pp. 163-76, doi:10.1501/Commua1_0000000721.
Vancouver
Yılmaz ES, Başar F. SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE e A IN THE SEQUENCE SPACE `(p). Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2014;63(2):163-76.