Research Article
BibTex RIS Cite

Annihilators of power values of b-generalized derivations in prime rings

Year 2020, , 1278 - 1284, 31.12.2020
https://doi.org/10.31801/cfsuasmas.628755

Abstract

Let $R$ be a prime ring with extended centroid $C$ and maximal left ring of quotients $Q_{ml}(R)$.  For  a nonzero element $b\in R$ let $F:R\rightarrow R$ be a right generalized $b$-derivation associated with the map $d$ of $R$. Suppose that  $s\left(F(x)\right)^n=0$ for all $x\in R$ where $s$ is a nonzero element in $R$ and $n\geq 1$ is a fixed positive integer. Then  there exist some $c\in Q{ml}(R)$ and $\beta \in C$ such that $d(x)=ad_c(x)$, $F(x)=(b+\beta)xb$ for all $x\in R$ and either $s(c+\beta)=0$ or $b(c+\beta)=0$.

References

  • Beidar, K. I., Martindale, W. S. III, Mikhalev, A. V., Rings with generalized identities, Marcel Dekker, Inc., New York, xiv+522 pp, 1996.
  • Brešar, M., A note on derivations, Math. J. Okayama Univ., 32 (1990), 83-88.
  • Chang, J.C., Annihilators of power values of a right generalized (α,β)-derivation, Bull. Inst. Math. Acad. Sin., 4 (1) (2009), 67-73.
  • Chuang, C. L., GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (3) (1988), 723-728.
  • Erickson, T. S.; Martindale, W. S., 3rd; Osborn, J. M., Prime nonassociative algebras, Pacific J. Math., 60 (1975), No. 1, 49-63.
  • Faith, C., Utumi, Y., On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hung., 14 (1967), 369-371.
  • Felzenszwalb, B., On a result of Levitzki, Canad. Math. Bull. 21 (2) (1978), 241-242.
  • Giambruno, A., Herstein, I.N., Derivations with nilpotent values, Rend. Circ. Mat. Palermo, 30 (2) (1981), 199-206.
  • Kharchenko,V.K., Differential identities of semiprime rings, Algebra Logika, 18 (1979),86-119; Algebra Logic, (English translation), 18 (1979), 58-80.
  • Kosan, M. T., Lee, T.K., b-generalized derivations having nilpotent values, J. Aust. Math. Soc., 96 (3) (2014), 326-337.
  • Lee, T.K., Lin, J.S., A result on derivations, Proc. Amer. Math. Soc., 124 (1996), 1687-1691.
  • Lee, T. K., Generalized derivations of left faithful rings, Comm. Algebra, 27(8) (1999), 4057-4073.
  • Martindale, W. S. 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
Year 2020, , 1278 - 1284, 31.12.2020
https://doi.org/10.31801/cfsuasmas.628755

Abstract

References

  • Beidar, K. I., Martindale, W. S. III, Mikhalev, A. V., Rings with generalized identities, Marcel Dekker, Inc., New York, xiv+522 pp, 1996.
  • Brešar, M., A note on derivations, Math. J. Okayama Univ., 32 (1990), 83-88.
  • Chang, J.C., Annihilators of power values of a right generalized (α,β)-derivation, Bull. Inst. Math. Acad. Sin., 4 (1) (2009), 67-73.
  • Chuang, C. L., GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (3) (1988), 723-728.
  • Erickson, T. S.; Martindale, W. S., 3rd; Osborn, J. M., Prime nonassociative algebras, Pacific J. Math., 60 (1975), No. 1, 49-63.
  • Faith, C., Utumi, Y., On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hung., 14 (1967), 369-371.
  • Felzenszwalb, B., On a result of Levitzki, Canad. Math. Bull. 21 (2) (1978), 241-242.
  • Giambruno, A., Herstein, I.N., Derivations with nilpotent values, Rend. Circ. Mat. Palermo, 30 (2) (1981), 199-206.
  • Kharchenko,V.K., Differential identities of semiprime rings, Algebra Logika, 18 (1979),86-119; Algebra Logic, (English translation), 18 (1979), 58-80.
  • Kosan, M. T., Lee, T.K., b-generalized derivations having nilpotent values, J. Aust. Math. Soc., 96 (3) (2014), 326-337.
  • Lee, T.K., Lin, J.S., A result on derivations, Proc. Amer. Math. Soc., 124 (1996), 1687-1691.
  • Lee, T. K., Generalized derivations of left faithful rings, Comm. Algebra, 27(8) (1999), 4057-4073.
  • Martindale, W. S. 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Nihan Baydar Yarbil 0000-0003-1376-2349

Publication Date December 31, 2020
Submission Date October 3, 2019
Acceptance Date July 20, 2020
Published in Issue Year 2020

Cite

APA Baydar Yarbil, N. (2020). Annihilators of power values of b-generalized derivations in prime rings. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1278-1284. https://doi.org/10.31801/cfsuasmas.628755
AMA Baydar Yarbil N. Annihilators of power values of b-generalized derivations in prime rings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2020;69(2):1278-1284. doi:10.31801/cfsuasmas.628755
Chicago Baydar Yarbil, Nihan. “Annihilators of Power Values of B-Generalized Derivations in Prime Rings”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 2 (December 2020): 1278-84. https://doi.org/10.31801/cfsuasmas.628755.
EndNote Baydar Yarbil N (December 1, 2020) Annihilators of power values of b-generalized derivations in prime rings. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 2 1278–1284.
IEEE N. Baydar Yarbil, “Annihilators of power values of b-generalized derivations in prime rings”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 2, pp. 1278–1284, 2020, doi: 10.31801/cfsuasmas.628755.
ISNAD Baydar Yarbil, Nihan. “Annihilators of Power Values of B-Generalized Derivations in Prime Rings”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/2 (December 2020), 1278-1284. https://doi.org/10.31801/cfsuasmas.628755.
JAMA Baydar Yarbil N. Annihilators of power values of b-generalized derivations in prime rings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:1278–1284.
MLA Baydar Yarbil, Nihan. “Annihilators of Power Values of B-Generalized Derivations in Prime Rings”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 2, 2020, pp. 1278-84, doi:10.31801/cfsuasmas.628755.
Vancouver Baydar Yarbil N. Annihilators of power values of b-generalized derivations in prime rings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(2):1278-84.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.