Research Article
BibTex RIS Cite

Relative subcopure-injective modules

Year 2020, , 832 - 846, 30.06.2020
https://doi.org/10.31801/cfsuasmas.640331

Abstract

In this paper, copure-injective modules is examined from an alternative perspective. For two modules A and B, A is called B-subcopure-injective if for every
copure monomorphism f : B → C and homomorphism g : B → A, there exists a
homomorphism h : C → A  such that hf=g. For a module A, the
subcopure-injectivity domain of A is defined to be the collection of all
modules B such that A is B-subcopure-injective.
Basic properties of the notion of subcopure-injectivity are investigated. We obtain
characterizations for various types of rings and modules, including
copure-injective modules, right CDS rings and right V-rings in terms of subcopure-injectivity domains. Since
subcopure-injectivity domains clearly contains all copure-injective modules,
studying the notion of modules which are subcopure-injective only with respect
to the class of copure-injective modules is reasonable. We refer to these
modules as sc-indigent. We studied the properties of subcopure-injectivity
domains and of sc-indigent modules and investigated over some certain rings.

References

  • Anderson, F. W., Fuller, K. R., Rings and categories of modules, Springer-Verlag, New York, 1974.
  • Aydoğdu, P., López-Permouth, S. R., An alternative perspective on injectivity of modules, J. Algebra, 338 (2011) 207-219.
  • Durğun, Y., An alternative perspective on flatness of modules, J. Algebra Appl., 15(8) (2016) 1650145, 18. communiserial : Fieldhouse, D. J., Pure theories, Math. Ann., 184 (1969) 1-18.
  • Harmanci, A., López-Permouth, S. R., Üngör, B., On the pure-injectivity profile of a ring, Comm. Algebra , 43(11) (2015) 4984-5002.
  • Hiremath, V. A., Cofinitely generated and cofinitely related modules, Acta Math. Acad. Sci. Hungar., 39 (1982), 1-9.
  • Hiremath (Madurai), V. A., Copure Submodules, Acta Math. Hung., 44(1-2) (1984) 3-12.
  • Hiremath (Madurai), V. A., Copure-injective modules, Indian J. Pure Appl. Math., 20(3) (1989) 250-259.
  • Hiremath (Madurai), V. A., Co-absolutely co-pure modules, Proceedings of the Edinburgh Mathematical Society, 29 (1986), 289-298.
  • Jans, J. P., On co-noetherian rings, J. London Math. Soc., 1 (1969), 588-590.
  • López-Permouth, S. R., Mastromatteo, J., Tolooei, Y., Üngör, B., Pure-injectivity from a different perspective, Glasg. Math. J., 60(1) (2018), 135--151.
  • López-Permouth, S. R., Simental-Rodriguez, J. E., Characterizing rings in terms of the extent of the injectivity and projectivity of their modules, J. Algebra, 362 (2012), 56-69.
  • Mao, L., Ding, N., Notes On Cotorsion Modules, Comm. Algebra, 33 (2005), 349-360.
  • Sharpe, D. W., Vamos, P., Injective Modules, (Cambridge Tracts in Mathematics and Mathematical Physics, 62), Cambridge, 1972.
  • Toksoy, S. E., Modules with minimal copure-injectivity domain, J. Algebra Appl., 18(11) (2019), 195-201.
  • Vamos, P., The dual of the notion of finitely generated, J. London Math. Soc., 43 (1968), 643-646.
  • Vamos, P., Classical rings, J. Algebra, 34 (1975), 114-129.
Year 2020, , 832 - 846, 30.06.2020
https://doi.org/10.31801/cfsuasmas.640331

Abstract

References

  • Anderson, F. W., Fuller, K. R., Rings and categories of modules, Springer-Verlag, New York, 1974.
  • Aydoğdu, P., López-Permouth, S. R., An alternative perspective on injectivity of modules, J. Algebra, 338 (2011) 207-219.
  • Durğun, Y., An alternative perspective on flatness of modules, J. Algebra Appl., 15(8) (2016) 1650145, 18. communiserial : Fieldhouse, D. J., Pure theories, Math. Ann., 184 (1969) 1-18.
  • Harmanci, A., López-Permouth, S. R., Üngör, B., On the pure-injectivity profile of a ring, Comm. Algebra , 43(11) (2015) 4984-5002.
  • Hiremath, V. A., Cofinitely generated and cofinitely related modules, Acta Math. Acad. Sci. Hungar., 39 (1982), 1-9.
  • Hiremath (Madurai), V. A., Copure Submodules, Acta Math. Hung., 44(1-2) (1984) 3-12.
  • Hiremath (Madurai), V. A., Copure-injective modules, Indian J. Pure Appl. Math., 20(3) (1989) 250-259.
  • Hiremath (Madurai), V. A., Co-absolutely co-pure modules, Proceedings of the Edinburgh Mathematical Society, 29 (1986), 289-298.
  • Jans, J. P., On co-noetherian rings, J. London Math. Soc., 1 (1969), 588-590.
  • López-Permouth, S. R., Mastromatteo, J., Tolooei, Y., Üngör, B., Pure-injectivity from a different perspective, Glasg. Math. J., 60(1) (2018), 135--151.
  • López-Permouth, S. R., Simental-Rodriguez, J. E., Characterizing rings in terms of the extent of the injectivity and projectivity of their modules, J. Algebra, 362 (2012), 56-69.
  • Mao, L., Ding, N., Notes On Cotorsion Modules, Comm. Algebra, 33 (2005), 349-360.
  • Sharpe, D. W., Vamos, P., Injective Modules, (Cambridge Tracts in Mathematics and Mathematical Physics, 62), Cambridge, 1972.
  • Toksoy, S. E., Modules with minimal copure-injectivity domain, J. Algebra Appl., 18(11) (2019), 195-201.
  • Vamos, P., The dual of the notion of finitely generated, J. London Math. Soc., 43 (1968), 643-646.
  • Vamos, P., Classical rings, J. Algebra, 34 (1975), 114-129.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Yusuf Alagöz 0000-0002-2535-4679

Publication Date June 30, 2020
Submission Date October 31, 2019
Acceptance Date April 17, 2020
Published in Issue Year 2020

Cite

APA Alagöz, Y. (2020). Relative subcopure-injective modules. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 832-846. https://doi.org/10.31801/cfsuasmas.640331
AMA Alagöz Y. Relative subcopure-injective modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):832-846. doi:10.31801/cfsuasmas.640331
Chicago Alagöz, Yusuf. “Relative Subcopure-Injective Modules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 832-46. https://doi.org/10.31801/cfsuasmas.640331.
EndNote Alagöz Y (June 1, 2020) Relative subcopure-injective modules. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 832–846.
IEEE Y. Alagöz, “Relative subcopure-injective modules”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 832–846, 2020, doi: 10.31801/cfsuasmas.640331.
ISNAD Alagöz, Yusuf. “Relative Subcopure-Injective Modules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 832-846. https://doi.org/10.31801/cfsuasmas.640331.
JAMA Alagöz Y. Relative subcopure-injective modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:832–846.
MLA Alagöz, Yusuf. “Relative Subcopure-Injective Modules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 832-46, doi:10.31801/cfsuasmas.640331.
Vancouver Alagöz Y. Relative subcopure-injective modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):832-46.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.