Research Article
BibTex RIS Cite

First order maximally dissipative singular differential operators

Year 2020, , 929 - 940, 30.06.2020
https://doi.org/10.31801/cfsuasmas.643349

Abstract

In this paper, using the Calkin-Gorbachuk method, the general form of all maximal dissipative extensions of the minimal operator generated by first order linear multipoint symmetric singular differential-operator expression in the direct sum of Hilbert space of vector-functions has been found. Later on, the structure of spectrum of these extensions is researched. Finally, the results are supported by an application.

References

  • Bairamov, E., Öztürk Mert, R., Ismailov, Z. I., Selfadjoint extensions of a singular differential operator, J. Math. Chem., 50 (2012), 1100-1110.
  • Fischbacher, C., On the theory of dissipative extensions. PhD, University of Kent School of Mathematics, Statistic and Actuarial Science, Canterbury, England, 2017.
  • Gorbachuk, V. I., Gorbachuk, M. L., Boundary Value Problems for Operator Differential Equations, Dordrecht, the Netherlands, Kluwer Academic Publishers, 1991.
  • Hörmander, L., On the theory of general partial differential operators, Acta Mathematica, 94 (1955), 161-248.
  • Ismailov, Z. I., Ipek, P., Selfadjoint singular differential operators of first order and their spectrum, Electronic Journal of Differential Equations, 21 (2016), 1-9.
  • Nagy, Sz. B., Foias, C., Analyse Harmonique des Operateurs de L' espace de Hilbert, Masson, Paris and Akad Kiodo, Budapest, 1997, English transl. North-Holland, Amesterdam and Akad Kiado, Budapest, 1970.
  • Naimark, M. A., Linear Differential Operators, New York, USA, Frederick Ungar Publishing Company, 1968.
  • Rofe-Beketov, F. S., Kholkin, A. M., Spectral Analysis of Differential Operators, USA, World Scientific Monograph Series in Mathematics 7, 2005.
  • von Neumann, J., Allgemeine eigenwerttheories hermitescher funktionaloperatoren, Mathematische Annalen, 102 (1929-1930), 49-131 (in German).
Year 2020, , 929 - 940, 30.06.2020
https://doi.org/10.31801/cfsuasmas.643349

Abstract

References

  • Bairamov, E., Öztürk Mert, R., Ismailov, Z. I., Selfadjoint extensions of a singular differential operator, J. Math. Chem., 50 (2012), 1100-1110.
  • Fischbacher, C., On the theory of dissipative extensions. PhD, University of Kent School of Mathematics, Statistic and Actuarial Science, Canterbury, England, 2017.
  • Gorbachuk, V. I., Gorbachuk, M. L., Boundary Value Problems for Operator Differential Equations, Dordrecht, the Netherlands, Kluwer Academic Publishers, 1991.
  • Hörmander, L., On the theory of general partial differential operators, Acta Mathematica, 94 (1955), 161-248.
  • Ismailov, Z. I., Ipek, P., Selfadjoint singular differential operators of first order and their spectrum, Electronic Journal of Differential Equations, 21 (2016), 1-9.
  • Nagy, Sz. B., Foias, C., Analyse Harmonique des Operateurs de L' espace de Hilbert, Masson, Paris and Akad Kiodo, Budapest, 1997, English transl. North-Holland, Amesterdam and Akad Kiado, Budapest, 1970.
  • Naimark, M. A., Linear Differential Operators, New York, USA, Frederick Ungar Publishing Company, 1968.
  • Rofe-Beketov, F. S., Kholkin, A. M., Spectral Analysis of Differential Operators, USA, World Scientific Monograph Series in Mathematics 7, 2005.
  • von Neumann, J., Allgemeine eigenwerttheories hermitescher funktionaloperatoren, Mathematische Annalen, 102 (1929-1930), 49-131 (in German).
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Pembe İpek Al 0000-0002-6111-1121

Zameddin Ismaılov 0000-0001-5193-5349

Publication Date June 30, 2020
Submission Date November 5, 2019
Acceptance Date April 28, 2020
Published in Issue Year 2020

Cite

APA İpek Al, P., & Ismaılov, Z. (2020). First order maximally dissipative singular differential operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 929-940. https://doi.org/10.31801/cfsuasmas.643349
AMA İpek Al P, Ismaılov Z. First order maximally dissipative singular differential operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):929-940. doi:10.31801/cfsuasmas.643349
Chicago İpek Al, Pembe, and Zameddin Ismaılov. “First Order Maximally Dissipative Singular Differential Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 929-40. https://doi.org/10.31801/cfsuasmas.643349.
EndNote İpek Al P, Ismaılov Z (June 1, 2020) First order maximally dissipative singular differential operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 929–940.
IEEE P. İpek Al and Z. Ismaılov, “First order maximally dissipative singular differential operators”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 929–940, 2020, doi: 10.31801/cfsuasmas.643349.
ISNAD İpek Al, Pembe - Ismaılov, Zameddin. “First Order Maximally Dissipative Singular Differential Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 929-940. https://doi.org/10.31801/cfsuasmas.643349.
JAMA İpek Al P, Ismaılov Z. First order maximally dissipative singular differential operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:929–940.
MLA İpek Al, Pembe and Zameddin Ismaılov. “First Order Maximally Dissipative Singular Differential Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 929-40, doi:10.31801/cfsuasmas.643349.
Vancouver İpek Al P, Ismaılov Z. First order maximally dissipative singular differential operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):929-40.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.