Research Article
BibTex RIS Cite
Year 2020, , 1133 - 1145, 31.12.2020
https://doi.org/10.31801/cfsuasmas.675691

Abstract

References

  • Birkhoff, G., Lattice theory, Amer. Math. Soc., 1973.
  • Calugareanu, G., Lattice Concepts of Module Theory, Springer Science+Business Media Dordrecht, 2000.
  • Ćirić, M., Bogdanović, S., The Lattice of Subautomata of an Automaton - A Survey, Publications de l'Institut Mathématique, 64 (78) (1998), 165-182 .
  • Atani, S. E., Bazari, M. Sedghi Shanbeh, Decomposable Fillters of Lattces, Kragujevac Journal of Mathematics, 43(1) (2019), 59-73.
  • Halaš , R., Relative polars in ordered sets, Carleton University, Czechoslovak Math. J., 50 (125) (2) 2000, 415-429.
  • Halaš, R., Jukl, M., On Beck;s coloring of posets, Discrete Math., 309 (13) (2009), 4584-4589.
  • Ito, M., Algebraic structures of automata, Theoretical Computer Science, 428 (2012), 164-168.
  • Ito, M., Algebraic structures of automata and Languages, World Scientific, Singapore, 2004.
  • Muir, A., Warner, M. W., Lattice valued relations and automata, Discrete App. Math., 7 (1984), 65-78.
  • Saliĭ, V. N., Universal Algebra and Automata, Saratov Univ., Saratov, 1988. (in Russian).
  • Smid, A. Maheshwari Michiel, Introduction to Theory of Computation, Ottawa, 2016.
  • Verma, R., Tiwri, S. P., Distinguishability and Completeness of Crispdeterministic Fuzzy Automata, Iranian Journal of Fuzzy Systems, 5 (2017), 19-30.

Lattice structures of automata

Year 2020, , 1133 - 1145, 31.12.2020
https://doi.org/10.31801/cfsuasmas.675691

Abstract

This paper is motivated by the results in [M. Ito, Algebraic structures of automata, Theoretical Computer Science
428 (2012) 164-168.]. Structures and the number of subautomata of a finite automaton are investigated.
It is shown that the set of all subautomata of a finite automaton A is upper semilattice. We give conditions which allow us to determine whether for a finite upper semilattice (L;≤) there exists an automaton A such that the set of all subautomata of A under set inclusion is isomorphic to (L;≤). Examples illustrating the results are presented.

References

  • Birkhoff, G., Lattice theory, Amer. Math. Soc., 1973.
  • Calugareanu, G., Lattice Concepts of Module Theory, Springer Science+Business Media Dordrecht, 2000.
  • Ćirić, M., Bogdanović, S., The Lattice of Subautomata of an Automaton - A Survey, Publications de l'Institut Mathématique, 64 (78) (1998), 165-182 .
  • Atani, S. E., Bazari, M. Sedghi Shanbeh, Decomposable Fillters of Lattces, Kragujevac Journal of Mathematics, 43(1) (2019), 59-73.
  • Halaš , R., Relative polars in ordered sets, Carleton University, Czechoslovak Math. J., 50 (125) (2) 2000, 415-429.
  • Halaš, R., Jukl, M., On Beck;s coloring of posets, Discrete Math., 309 (13) (2009), 4584-4589.
  • Ito, M., Algebraic structures of automata, Theoretical Computer Science, 428 (2012), 164-168.
  • Ito, M., Algebraic structures of automata and Languages, World Scientific, Singapore, 2004.
  • Muir, A., Warner, M. W., Lattice valued relations and automata, Discrete App. Math., 7 (1984), 65-78.
  • Saliĭ, V. N., Universal Algebra and Automata, Saratov Univ., Saratov, 1988. (in Russian).
  • Smid, A. Maheshwari Michiel, Introduction to Theory of Computation, Ottawa, 2016.
  • Verma, R., Tiwri, S. P., Distinguishability and Completeness of Crispdeterministic Fuzzy Automata, Iranian Journal of Fuzzy Systems, 5 (2017), 19-30.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Shahabaddin Ebrahimi Atani 0000-0003-0568-9452

Maryam Sedghi Shanbeh Bazari 0000-0001-9805-8208

Publication Date December 31, 2020
Submission Date January 20, 2020
Acceptance Date May 17, 2020
Published in Issue Year 2020

Cite

APA Atani, S. E., & Sedghi Shanbeh Bazari, M. (2020). Lattice structures of automata. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1133-1145. https://doi.org/10.31801/cfsuasmas.675691
AMA Atani SE, Sedghi Shanbeh Bazari M. Lattice structures of automata. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2020;69(2):1133-1145. doi:10.31801/cfsuasmas.675691
Chicago Atani, Shahabaddin Ebrahimi, and Maryam Sedghi Shanbeh Bazari. “Lattice Structures of Automata”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 2 (December 2020): 1133-45. https://doi.org/10.31801/cfsuasmas.675691.
EndNote Atani SE, Sedghi Shanbeh Bazari M (December 1, 2020) Lattice structures of automata. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 2 1133–1145.
IEEE S. E. Atani and M. Sedghi Shanbeh Bazari, “Lattice structures of automata”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 2, pp. 1133–1145, 2020, doi: 10.31801/cfsuasmas.675691.
ISNAD Atani, Shahabaddin Ebrahimi - Sedghi Shanbeh Bazari, Maryam. “Lattice Structures of Automata”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/2 (December 2020), 1133-1145. https://doi.org/10.31801/cfsuasmas.675691.
JAMA Atani SE, Sedghi Shanbeh Bazari M. Lattice structures of automata. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:1133–1145.
MLA Atani, Shahabaddin Ebrahimi and Maryam Sedghi Shanbeh Bazari. “Lattice Structures of Automata”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 2, 2020, pp. 1133-45, doi:10.31801/cfsuasmas.675691.
Vancouver Atani SE, Sedghi Shanbeh Bazari M. Lattice structures of automata. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(2):1133-45.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.