Year 2021,
, 143 - 155, 30.06.2021
Halil Gezer
,
Cem Kaanoglu
References
- Adler, M., Van Moerbeke P. and Vanhaecke P., Moment matrices and multi-component KP,
with applications to random matrix theory, Comm. Math. Phys, 286 (2009), 1-38.
- Aktaş, R., Altn A. and Taşdelen, F., A new family of analytic functions dened by means of Rodrigues type formula, Math. Slovaca, 68, 3 (2018), 607-616.
- Aktaş, R. and Altn, A., A generating function and some recurrence relations for a family of
polynomials, Proceedings of the 12th WSEAS International conference on Applied Mathemat-
ics, 2007, 118-121.
- Altın, A., Aktaş, R., A class of polynomials in two variables, Mathematica Morovica, 14 (1)
(2014), 1-14.
- Aptekarev, A. I., Strong asymptotics of multiple orthogonal polynomials for Nikishin systems,
Math. Sb. 190 no.5 (1999), 3-44 (Russian); Sbornik Math. 190 (5) (1999), 631-669.
- Aptekarev, A.I., Branquinho, A. and Van Assche, W., Multiple orthogonal polynomials for
classical weights, Transectional American Mathematical Society, 355,10 (2003), 3887-3914.
- Van Assche, W. and Yakubovich, S.B., Multiple orthogonal polynomials associated with Mcdonald
functions, Integral Transforms Spec. Funct., 9 (3) (2000), 229-244.
- Van Assche, W. and Coussement, Els., Some classical multiple orthogonal polynomials, J.
Comput. Appl. Math., 127 (2001), 317-347.
- Bleher, P.M. and Kuijlaars, A.B.J., Random matrices with external source and multiple orthogonal
polynomials, Internat. Math. Research Notices, 3 (2004), 109-129.
- Coussement, E. and Van Assche, W., Multiple orthogonal polynomials associated with the
modified Bessel functions of the first kind, Constructive Approximation, 19 (2003), 237-263.
- Coussement, E. and Van Assche, W., Some properties of multiple orthogonal polynomials
associated with Macdonald functions, J. Comput. Appl. Math., 133 (2001), 253-261.
- Kaanolu, C. and Ozarslan, M.A., Some properties of generalized multiple Hermite polynomials,
J. Comput. Appl. Math., 235 (2011) 4878-4887.
- Kuijlaars, A.B.J., Van Assche, W. and Wielonsky, F., Quadratic Hermite-Pade approximation
to the exponential function: a Riemann-Hilbert approach, Constr. Approx. 21 (2005), 313-320.
- Lee, D.W., Properties of multiple Hermite and multiple Laguerre polynomials by the generating
function, Integral Transforms Spec. Funct. 18 (2007) 855-869.
- Nikishin, E.M. and Sorokin, V.V., Rational approximations and orthogonality, Translations
of Mathematical Monographs (Providence, RI: American Mathematical Society), (1991), R192.
- Ozarslan, M.A. and Kaanolu, C., Some generalization of multiple Laguerre polynomials via
Rodrigues formula, Ars Combinatoria, 123 (2015) 195-206.
- Varma, S., On a generalization of Szasz operators by multiple Appell polynomials, Stud.
Univ. Babe¸s-Bolyai Math. 58 (3) (2013), 361-369.
Some properties of a new class of analytic functions defined via Rodrigues formula
Year 2021,
, 143 - 155, 30.06.2021
Halil Gezer
,
Cem Kaanoglu
Abstract
In this paper, we introduce and study the new family of analytic functions via Rodrigues formula. Some main properties, the generating function, various recurrence relations and differential properties of these functions are obtained. Furthermore, the differential equations are given for the subclasses of this family of analytic functions.
References
- Adler, M., Van Moerbeke P. and Vanhaecke P., Moment matrices and multi-component KP,
with applications to random matrix theory, Comm. Math. Phys, 286 (2009), 1-38.
- Aktaş, R., Altn A. and Taşdelen, F., A new family of analytic functions dened by means of Rodrigues type formula, Math. Slovaca, 68, 3 (2018), 607-616.
- Aktaş, R. and Altn, A., A generating function and some recurrence relations for a family of
polynomials, Proceedings of the 12th WSEAS International conference on Applied Mathemat-
ics, 2007, 118-121.
- Altın, A., Aktaş, R., A class of polynomials in two variables, Mathematica Morovica, 14 (1)
(2014), 1-14.
- Aptekarev, A. I., Strong asymptotics of multiple orthogonal polynomials for Nikishin systems,
Math. Sb. 190 no.5 (1999), 3-44 (Russian); Sbornik Math. 190 (5) (1999), 631-669.
- Aptekarev, A.I., Branquinho, A. and Van Assche, W., Multiple orthogonal polynomials for
classical weights, Transectional American Mathematical Society, 355,10 (2003), 3887-3914.
- Van Assche, W. and Yakubovich, S.B., Multiple orthogonal polynomials associated with Mcdonald
functions, Integral Transforms Spec. Funct., 9 (3) (2000), 229-244.
- Van Assche, W. and Coussement, Els., Some classical multiple orthogonal polynomials, J.
Comput. Appl. Math., 127 (2001), 317-347.
- Bleher, P.M. and Kuijlaars, A.B.J., Random matrices with external source and multiple orthogonal
polynomials, Internat. Math. Research Notices, 3 (2004), 109-129.
- Coussement, E. and Van Assche, W., Multiple orthogonal polynomials associated with the
modified Bessel functions of the first kind, Constructive Approximation, 19 (2003), 237-263.
- Coussement, E. and Van Assche, W., Some properties of multiple orthogonal polynomials
associated with Macdonald functions, J. Comput. Appl. Math., 133 (2001), 253-261.
- Kaanolu, C. and Ozarslan, M.A., Some properties of generalized multiple Hermite polynomials,
J. Comput. Appl. Math., 235 (2011) 4878-4887.
- Kuijlaars, A.B.J., Van Assche, W. and Wielonsky, F., Quadratic Hermite-Pade approximation
to the exponential function: a Riemann-Hilbert approach, Constr. Approx. 21 (2005), 313-320.
- Lee, D.W., Properties of multiple Hermite and multiple Laguerre polynomials by the generating
function, Integral Transforms Spec. Funct. 18 (2007) 855-869.
- Nikishin, E.M. and Sorokin, V.V., Rational approximations and orthogonality, Translations
of Mathematical Monographs (Providence, RI: American Mathematical Society), (1991), R192.
- Ozarslan, M.A. and Kaanolu, C., Some generalization of multiple Laguerre polynomials via
Rodrigues formula, Ars Combinatoria, 123 (2015) 195-206.
- Varma, S., On a generalization of Szasz operators by multiple Appell polynomials, Stud.
Univ. Babe¸s-Bolyai Math. 58 (3) (2013), 361-369.