Research Article
BibTex RIS Cite

Statistical extension of bounded sequence space

Year 2021, , 82 - 99, 30.06.2021
https://doi.org/10.31801/cfsuasmas.736132

Abstract

In this paper by using natural density real valued bounded sequence space $l_{\infty}$ is extented and statistical bounded sequence space $l_{\infty}^{st}$ is obtained. Besides the main properties of the space $l_{\infty}^{st}$, it is shown that $l_{\infty}^{st}$ is a Banach space with a norm produced with the help of density. Also, it is shown
that there is no matrix extension of the space $l_{\infty}$ that its bounded sequences space covers $l_{\infty}^{st}$. Finally, it is shown that the space $l_{\infty}$ is a non-porous subset of $l_{\infty}^{st}$.

Project Number

Bu bir projenin sonuçları değildir.

References

  • Altınok, M., Küçükaslan, M., A-statistical convergence and A-statistical monotonicity, Applied Mathematics E-Notes, 13 (2013), 249-260.
  • Altınok, M., Küçükaslan, M., Ideal limit superior-inferior, Gazi University Journal of Science, 30 (1) (2017), 401-411.
  • Altınok, M., Küçükaslan, M., A-statistical supremum-infimum and A-statistical convergence, Azerbaijan Journal of Mathematics, 4 (2) (2014), 31-42.
  • Altınok, M., Porosity supremum-infimum and porosity convergence, Konuralp Journal of Mathematics, 6 (1) (2018), 163-170.
  • Bilalov, B., Nazarova, T., On statistical convergence in metric spaces, Journal of Mathematics Research, 7 (1) (2015), 37-43.
  • Bilalov, B., Nazarova, T., On statistical type convergence in uniform spaces, Bull. of the Iranian Math. Soc., 42 (4) (2016), 975-986.
  • Cabrera, M. O., Rosalsky, A., Ünver, M., Volodin, A., On the concept of B-statistical uniform integrability of weighted sums of random variables and the law of large numbers with mean convergence in the statistical sense, TEST, (2020).
  • Et, M., Sengül, H., Some Cesaro type summability spaces of order α and lacunary statistical convergence of order α, Filomat, 28 (8) (2014), 1593-1602.
  • Erdös, P., Tenenboum, G., Sur les densities de certaines suites dentiers, Proc. London Math. Soc., 59 (1989), 417-438.
  • Fast, H., Sur la convergence statistique, Colloquium Mathematicae, 2 (3-4) (1951), 241-244.
  • Fridy, J. A., On statistical convergence, Analysis, 5 (1985), 301-313.
  • Fridy, J. A., Khan, M. K., Tauberian theorems via statistical convergnece, J.Math. Anal.Appl., 228 (1998), 73-95.
  • Gadjiev, A. D., Orhan, C., Some approximation theorems via statistical convergnece, Rocky Mountain J. Math., 32 (2002), 129-138.
  • Kaya, E, Küçükaslan, M., Wagner, R., On statistical convergence and statistical monotonicity, Annales Univ. Sci. Budapest. Sect. Comp., 39 (2013), 257-270.
  • Küçükaslan, M., Altınok, M., Statistical supremum-infimum and statistical convergence, The Aligarh Bulletin of Mathematics, 32 (1-2) (2013), 1-16.
  • Küçükaslan, M., Deger U., Dovgoshey O., On the Statistical Convergence of Metric-Valued Sequences, Ukrainian Mathematical Journal, 66 (5) (2014), 712-720.
  • Lindenstrauss, J., Preiss, D., Tišer, J., Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces, Princeton University Press, 41 William Street, Princeton, New Jersey, 2012.
  • Lonetti, P., Limit points of subsequences, Topology and its Applications, 263 (2019), 221-229.
  • Miller, H. I., A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347 (1995), 1881-1919.
  • Pratulananda, D., Savas, E., On Generalized Statistical and Ideal Convergence of Metric-Valued Sequences, Ukrainian Mathematical Journal, 68 (1) (2017), 1849-1859.
  • Salat, T., On statistical convergent sequences of real numbers, Math. Slovaca, 30 (2) (1980), 139-150.
  • Sanjoy Ghosal, K., Statistical convergence of a sequence of random variables and limits theorems, Applications of Mathematics, 58 (4) (2013), 423-437.
  • Sandeep G., Bhardwaj V.K., On deferred f-statistical convergnece, Kyunpook Math.J., 58 (2018), 91-103.
  • Steinhaus, H., Sur la convergene ordinaire et la convergence asymptotique, Colloquium Mathematicae, 2 (3-4) (1951), 73-74.
  • Zygmund, A., Trigonometric series, vol II, Cambiridge Univ Press, 1979.
Year 2021, , 82 - 99, 30.06.2021
https://doi.org/10.31801/cfsuasmas.736132

Abstract

Supporting Institution

Destekleyen Kuruluş Yok.

Project Number

Bu bir projenin sonuçları değildir.

References

  • Altınok, M., Küçükaslan, M., A-statistical convergence and A-statistical monotonicity, Applied Mathematics E-Notes, 13 (2013), 249-260.
  • Altınok, M., Küçükaslan, M., Ideal limit superior-inferior, Gazi University Journal of Science, 30 (1) (2017), 401-411.
  • Altınok, M., Küçükaslan, M., A-statistical supremum-infimum and A-statistical convergence, Azerbaijan Journal of Mathematics, 4 (2) (2014), 31-42.
  • Altınok, M., Porosity supremum-infimum and porosity convergence, Konuralp Journal of Mathematics, 6 (1) (2018), 163-170.
  • Bilalov, B., Nazarova, T., On statistical convergence in metric spaces, Journal of Mathematics Research, 7 (1) (2015), 37-43.
  • Bilalov, B., Nazarova, T., On statistical type convergence in uniform spaces, Bull. of the Iranian Math. Soc., 42 (4) (2016), 975-986.
  • Cabrera, M. O., Rosalsky, A., Ünver, M., Volodin, A., On the concept of B-statistical uniform integrability of weighted sums of random variables and the law of large numbers with mean convergence in the statistical sense, TEST, (2020).
  • Et, M., Sengül, H., Some Cesaro type summability spaces of order α and lacunary statistical convergence of order α, Filomat, 28 (8) (2014), 1593-1602.
  • Erdös, P., Tenenboum, G., Sur les densities de certaines suites dentiers, Proc. London Math. Soc., 59 (1989), 417-438.
  • Fast, H., Sur la convergence statistique, Colloquium Mathematicae, 2 (3-4) (1951), 241-244.
  • Fridy, J. A., On statistical convergence, Analysis, 5 (1985), 301-313.
  • Fridy, J. A., Khan, M. K., Tauberian theorems via statistical convergnece, J.Math. Anal.Appl., 228 (1998), 73-95.
  • Gadjiev, A. D., Orhan, C., Some approximation theorems via statistical convergnece, Rocky Mountain J. Math., 32 (2002), 129-138.
  • Kaya, E, Küçükaslan, M., Wagner, R., On statistical convergence and statistical monotonicity, Annales Univ. Sci. Budapest. Sect. Comp., 39 (2013), 257-270.
  • Küçükaslan, M., Altınok, M., Statistical supremum-infimum and statistical convergence, The Aligarh Bulletin of Mathematics, 32 (1-2) (2013), 1-16.
  • Küçükaslan, M., Deger U., Dovgoshey O., On the Statistical Convergence of Metric-Valued Sequences, Ukrainian Mathematical Journal, 66 (5) (2014), 712-720.
  • Lindenstrauss, J., Preiss, D., Tišer, J., Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces, Princeton University Press, 41 William Street, Princeton, New Jersey, 2012.
  • Lonetti, P., Limit points of subsequences, Topology and its Applications, 263 (2019), 221-229.
  • Miller, H. I., A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347 (1995), 1881-1919.
  • Pratulananda, D., Savas, E., On Generalized Statistical and Ideal Convergence of Metric-Valued Sequences, Ukrainian Mathematical Journal, 68 (1) (2017), 1849-1859.
  • Salat, T., On statistical convergent sequences of real numbers, Math. Slovaca, 30 (2) (1980), 139-150.
  • Sanjoy Ghosal, K., Statistical convergence of a sequence of random variables and limits theorems, Applications of Mathematics, 58 (4) (2013), 423-437.
  • Sandeep G., Bhardwaj V.K., On deferred f-statistical convergnece, Kyunpook Math.J., 58 (2018), 91-103.
  • Steinhaus, H., Sur la convergene ordinaire et la convergence asymptotique, Colloquium Mathematicae, 2 (3-4) (1951), 73-74.
  • Zygmund, A., Trigonometric series, vol II, Cambiridge Univ Press, 1979.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Maya Altınok 0000-0002-6671-743X

Mehmet Küçükaslan 0000-0002-3183-3123

Umutcan Kaya This is me 0000-0002-0419-6106

Project Number Bu bir projenin sonuçları değildir.
Publication Date June 30, 2021
Submission Date May 13, 2020
Acceptance Date October 7, 2020
Published in Issue Year 2021

Cite

APA Altınok, M., Küçükaslan, M., & Kaya, U. (2021). Statistical extension of bounded sequence space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), 82-99. https://doi.org/10.31801/cfsuasmas.736132
AMA Altınok M, Küçükaslan M, Kaya U. Statistical extension of bounded sequence space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2021;70(1):82-99. doi:10.31801/cfsuasmas.736132
Chicago Altınok, Maya, Mehmet Küçükaslan, and Umutcan Kaya. “Statistical Extension of Bounded Sequence Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (June 2021): 82-99. https://doi.org/10.31801/cfsuasmas.736132.
EndNote Altınok M, Küçükaslan M, Kaya U (June 1, 2021) Statistical extension of bounded sequence space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 1 82–99.
IEEE M. Altınok, M. Küçükaslan, and U. Kaya, “Statistical extension of bounded sequence space”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 1, pp. 82–99, 2021, doi: 10.31801/cfsuasmas.736132.
ISNAD Altınok, Maya et al. “Statistical Extension of Bounded Sequence Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/1 (June 2021), 82-99. https://doi.org/10.31801/cfsuasmas.736132.
JAMA Altınok M, Küçükaslan M, Kaya U. Statistical extension of bounded sequence space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:82–99.
MLA Altınok, Maya et al. “Statistical Extension of Bounded Sequence Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 1, 2021, pp. 82-99, doi:10.31801/cfsuasmas.736132.
Vancouver Altınok M, Küçükaslan M, Kaya U. Statistical extension of bounded sequence space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(1):82-99.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.