Research Article
BibTex RIS Cite
Year 2021, , 984 - 996, 31.12.2021
https://doi.org/10.31801/cfsuasmas.783398

Abstract

References

  • Afkhami, M., Barati, Z., Khashyarmanesh, K., A graph associated to a lattice, Ricerche Mat., 63 (2014), 67–78. https://doi.org/10.1007/s11587-013-0164-6
  • Anderson, D. F., Livingston, P. S., The zero-divisor graph of a commutative rings, J. Algebra, 217 (1999), 434-447. https://doi.org/10.1006/jabr.1998.7840
  • Anderson, D. F., Badawi, A., The total graph of a commutative ring, J. Algebra, 320(7) (2008), 2706–2719. https://doi.org/10.1016/j.jalgebra.2008.06.028
  • Barati, Z., Khashyarmanesh, K., Mohammadi, F., Nafar, Kh., On the associated graphs to a commutative ring, J. Algebra Appl., 11(2) (2012), 1250037 (17 pages). https://doi.org/10.1142/S0219498811005610
  • Beck, I., Coloring of commutative rings, J. Algebra, 116 (1988), 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
  • Bondy, J. A., Murty, U. S. R., Graph Theory, Graduate Texts in Mathematics, 244, Springer, New York, 2008.
  • Atani, S. E., The ideal theory in quotients of commutative semirings, Glas. Math., 42 (2007), 301–308. https://doi.org/10.3336/gm.42.2.05
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., Strong co-ideal theory in quotients of semirings, J. of Advanced Research in Pure Math., 5(3) (2013), 19–32. https://doi.org/10.5373/jarpm.1482.061212
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., The identity-summand graph of commutative semirings, J. Korean Math. Soc., 51 (2014), 189–202. https://doi.org/10.4134/JKMS.2014.51.1.189
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., Total graph of a commutative semiring with respect to identity-summand elements, J. Korean Math. Soc., 51(3) (2014), 593– 607. https://doi.org/10.4134/JKMS.2014.51.3.593
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., Total identity-summand graph of a commutative semiring with respect to a co-ideal, J. Korean Math. Soc., 52(1) (2015), 159-176. https://doi.org/10.4134/JKMS.2015.52.1.159
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., A co-ideal based identity-summand graph of a commutative semiring, Comment. Math. Univ. Carolin., 56(3) (2015), 269–285. https://doi.org/10.14712/1213-7243.2015.124
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., A graph associated to proper nonsmall ideals of a commutative ring, Comment. Math. Univ. Carolin., 58(1) (2017), 1-12. https://doi.org/10.14712/1213-7243.2015.189
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., Sedghi Shanbeh Bazari, M., Total graph of a 0-distributive lattice, Categories and General Algebraic Structures with Applications, 9(1) (2018), 15-27. https://doi.org/10.29252/cgasa.9.1.15
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., Sedghi Shanbeh Bazari, M., A semi-prime filter based identity-summand graph of a lattice, LE Matematich, Vol. LXXIII (2018), 297–318. https://doi.org/10.4418/2018.73.2.5
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., Sarvandi, Z. E., Intersection graphs of co-ideals of semirings, Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 68(1) (2019), 840–851. https://doi.org/10.31801/cfsuasmas.481603
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., On a graph of ideals of a commutative ring, Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 68(2) (2019), 2283-2297. https://doi.org/10.31801/cfsuasmas.534944
  • Atani S. E., Esmaeili Khalil Saraei, F., The total graph of a commutative semiring, An. Stiint. Univ. Ovidius Constanta Ser. Mat., 21(2) (2013), 21-33. https://doi.org/10.2478/auom-2013-0021
  • Golan, J. S., Semirings and Their Applications, Kluwer Academic Publisher Dordrecht, 1999. https://doi.org/10.1007/978-94-015-9333-5

A graph associated to a commutative semiring

Year 2021, , 984 - 996, 31.12.2021
https://doi.org/10.31801/cfsuasmas.783398

Abstract

Let RR be a commutative finite semiring with nonzero identity and HH be an arbitrary multiplicatively closed subset RR. The generalized identity-summand graph of RR is the (simple) graph GH(R)GH(R) with all elements of RR as the vertices, and two distinct vertices xx and yy are adjacent if and only if x+yHx+y∈H. In this paper, we study some basic properties of GH(R)GH(R). Moreover, we characterize the planarity, chromatic number, clique number and independence number of GH(R)GH(R).

References

  • Afkhami, M., Barati, Z., Khashyarmanesh, K., A graph associated to a lattice, Ricerche Mat., 63 (2014), 67–78. https://doi.org/10.1007/s11587-013-0164-6
  • Anderson, D. F., Livingston, P. S., The zero-divisor graph of a commutative rings, J. Algebra, 217 (1999), 434-447. https://doi.org/10.1006/jabr.1998.7840
  • Anderson, D. F., Badawi, A., The total graph of a commutative ring, J. Algebra, 320(7) (2008), 2706–2719. https://doi.org/10.1016/j.jalgebra.2008.06.028
  • Barati, Z., Khashyarmanesh, K., Mohammadi, F., Nafar, Kh., On the associated graphs to a commutative ring, J. Algebra Appl., 11(2) (2012), 1250037 (17 pages). https://doi.org/10.1142/S0219498811005610
  • Beck, I., Coloring of commutative rings, J. Algebra, 116 (1988), 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
  • Bondy, J. A., Murty, U. S. R., Graph Theory, Graduate Texts in Mathematics, 244, Springer, New York, 2008.
  • Atani, S. E., The ideal theory in quotients of commutative semirings, Glas. Math., 42 (2007), 301–308. https://doi.org/10.3336/gm.42.2.05
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., Strong co-ideal theory in quotients of semirings, J. of Advanced Research in Pure Math., 5(3) (2013), 19–32. https://doi.org/10.5373/jarpm.1482.061212
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., The identity-summand graph of commutative semirings, J. Korean Math. Soc., 51 (2014), 189–202. https://doi.org/10.4134/JKMS.2014.51.1.189
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., Total graph of a commutative semiring with respect to identity-summand elements, J. Korean Math. Soc., 51(3) (2014), 593– 607. https://doi.org/10.4134/JKMS.2014.51.3.593
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., Total identity-summand graph of a commutative semiring with respect to a co-ideal, J. Korean Math. Soc., 52(1) (2015), 159-176. https://doi.org/10.4134/JKMS.2015.52.1.159
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., A co-ideal based identity-summand graph of a commutative semiring, Comment. Math. Univ. Carolin., 56(3) (2015), 269–285. https://doi.org/10.14712/1213-7243.2015.124
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., A graph associated to proper nonsmall ideals of a commutative ring, Comment. Math. Univ. Carolin., 58(1) (2017), 1-12. https://doi.org/10.14712/1213-7243.2015.189
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., Sedghi Shanbeh Bazari, M., Total graph of a 0-distributive lattice, Categories and General Algebraic Structures with Applications, 9(1) (2018), 15-27. https://doi.org/10.29252/cgasa.9.1.15
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., Sedghi Shanbeh Bazari, M., A semi-prime filter based identity-summand graph of a lattice, LE Matematich, Vol. LXXIII (2018), 297–318. https://doi.org/10.4418/2018.73.2.5
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., Sarvandi, Z. E., Intersection graphs of co-ideals of semirings, Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 68(1) (2019), 840–851. https://doi.org/10.31801/cfsuasmas.481603
  • Atani, S. E., Hesari, S.D.P., Khoramdel, M., On a graph of ideals of a commutative ring, Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 68(2) (2019), 2283-2297. https://doi.org/10.31801/cfsuasmas.534944
  • Atani S. E., Esmaeili Khalil Saraei, F., The total graph of a commutative semiring, An. Stiint. Univ. Ovidius Constanta Ser. Mat., 21(2) (2013), 21-33. https://doi.org/10.2478/auom-2013-0021
  • Golan, J. S., Semirings and Their Applications, Kluwer Academic Publisher Dordrecht, 1999. https://doi.org/10.1007/978-94-015-9333-5
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Shahabaddin Ebrahimi Atani 0000-0003-0568-9452

Mehdi Khoramdel 0000-0003-0663-0356

Saboura Dolatı Pısh Hesarı This is me 0000-0001-8830-636X

Mahsa Nıkmard Rostam Alıpour This is me 0000-0003-3264-7936

Publication Date December 31, 2021
Submission Date August 21, 2020
Acceptance Date June 4, 2021
Published in Issue Year 2021

Cite

APA Atani, S. E., Khoramdel, M., Dolatı Pısh Hesarı, S., Nıkmard Rostam Alıpour, M. (2021). A graph associated to a commutative semiring. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 984-996. https://doi.org/10.31801/cfsuasmas.783398
AMA Atani SE, Khoramdel M, Dolatı Pısh Hesarı S, Nıkmard Rostam Alıpour M. A graph associated to a commutative semiring. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):984-996. doi:10.31801/cfsuasmas.783398
Chicago Atani, Shahabaddin Ebrahimi, Mehdi Khoramdel, Saboura Dolatı Pısh Hesarı, and Mahsa Nıkmard Rostam Alıpour. “A Graph Associated to a Commutative Semiring”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 984-96. https://doi.org/10.31801/cfsuasmas.783398.
EndNote Atani SE, Khoramdel M, Dolatı Pısh Hesarı S, Nıkmard Rostam Alıpour M (December 1, 2021) A graph associated to a commutative semiring. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 984–996.
IEEE S. E. Atani, M. Khoramdel, S. Dolatı Pısh Hesarı, and M. Nıkmard Rostam Alıpour, “A graph associated to a commutative semiring”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 984–996, 2021, doi: 10.31801/cfsuasmas.783398.
ISNAD Atani, Shahabaddin Ebrahimi et al. “A Graph Associated to a Commutative Semiring”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 984-996. https://doi.org/10.31801/cfsuasmas.783398.
JAMA Atani SE, Khoramdel M, Dolatı Pısh Hesarı S, Nıkmard Rostam Alıpour M. A graph associated to a commutative semiring. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:984–996.
MLA Atani, Shahabaddin Ebrahimi et al. “A Graph Associated to a Commutative Semiring”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 984-96, doi:10.31801/cfsuasmas.783398.
Vancouver Atani SE, Khoramdel M, Dolatı Pısh Hesarı S, Nıkmard Rostam Alıpour M. A graph associated to a commutative semiring. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):984-96.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.