Research Article
BibTex RIS Cite
Year 2021, , 653 - 663, 31.12.2021
https://doi.org/10.31801/cfsuasmas.786804

Abstract

References

  • Akbari, S., Mohammadan, A., On the zero-divisor graph of a commutative ring, J. Algebra., 274 (2004), 847-855, https://doi.org/10.1016/S0021-8693(03)00435-6.
  • Anderson, D. F., Badawi, A., On the zero-divisor graph of a ring, Comm. Algebra., 36 (2008), 3073-3092, https://doi.org/10.1080/00927870802110888.
  • Anderson, D. D., Naseer, M., Beck's coloring of a commutative ring, J. Algebra., 159 (1993), 500-514. https://doi.org/10.1006/jabr.1993.1171
  • Anderson, D. F., Livingston, P. S., The zero-divisor graph of a commutative ring, J. Algebra., 217 (1999), 434-447, https://doi.org/10.1006/jabr.1998.7840.
  • Anderson, D. F., Mulay, S. B., On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra., 210 (2007), 543-550, https://doi.org/10.1016/j.jpaa.2006.10.007.
  • Axtel, M., Stickles, J., Zero-divisor graphs of idealizations, J. Pure Appl. Algebra., 204 (2006), 235-243, https://doi.org/10.1016/j.jpaa.2005.04.004.
  • Badawi, A., Darani, A. Y., On weakly 2-absorbing ideals of commutative rings, Houston J. Math., 39 (2013), 441-452.
  • Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75 (2007), 417-429. DOI: https://doi.org/10.1017/S0004972700039344.
  • Beck, I., Coloring of commutative rings, J. Algebra., 116 (1988), 208-226, https://doi.org/10.1016/0021-8693(88)90202-5.
  • Bollaboás, B., Graph Theory, An Introductory Course, Springer-Verlag, New York, 1979.
  • Elele, A. B., Ulucak, G., 3-zero-divisor hypergraph regarding an ideal, 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, 2017, 1-4, doi:10.1109/ICMSAO.2017.7934846.
  • Gilmer, R., Multiplicative ideal theory. Queen's Papers in Pure and Appl. Math., 90, 1992, doi:10.1017/S0008439500031234.
  • Livingston, P. S., Structure in Zero-Divisor Graphs of Commutative Rings, Master Thesis, The University of Tennessee, Knoxville, TN, 1997.
  • Lucas, T. G., The diameter of a zero-divisor graph, J. Algebra 301 (2006), 174-193, https://doi.org/10.1016/j.jalgebra.2006.01.019.
  • Redmond, S. P., On the zero-divisor graphs of small finite commutative rings, Discrete Math., 307 (2007), 1155-1166, https://doi.org/10.1016/j.disc.2006.07.025.

The triple zero graph of a commutative ring

Year 2021, , 653 - 663, 31.12.2021
https://doi.org/10.31801/cfsuasmas.786804

Abstract

Let $R$ be a commutative ring with non-zero identity. We define the set of
triple zero elements of $R$ by $TZ(R)=\{a\in Z(R)^{\ast}:$ there exists
$b,c\in R\backslash\{0\}$ such that $abc=0$, $ab\neq0$, $ac\neq0$,
$bc\neq0\}.$ In this paper, we introduce and study some properties of the
triple zero graph of $R$ which is an undirected graph $TZ\Gamma(R)$ with
vertices $TZ(R),$ and two vertices $a$ and $b$ are adjacent if and only if
$ab\neq0$ and there exists a non-zero element $c$ of $R$ such that $ac\neq0$,
$bc\neq0$, and $abc=0$. We investigate some properties of the triple zero
graph of a general ZPI-ring $R,$ we prove that $diam(TZ\Gamma(R))\in\{0,1,2\}$
and $gr(G)\in\{3,\infty\}$.

References

  • Akbari, S., Mohammadan, A., On the zero-divisor graph of a commutative ring, J. Algebra., 274 (2004), 847-855, https://doi.org/10.1016/S0021-8693(03)00435-6.
  • Anderson, D. F., Badawi, A., On the zero-divisor graph of a ring, Comm. Algebra., 36 (2008), 3073-3092, https://doi.org/10.1080/00927870802110888.
  • Anderson, D. D., Naseer, M., Beck's coloring of a commutative ring, J. Algebra., 159 (1993), 500-514. https://doi.org/10.1006/jabr.1993.1171
  • Anderson, D. F., Livingston, P. S., The zero-divisor graph of a commutative ring, J. Algebra., 217 (1999), 434-447, https://doi.org/10.1006/jabr.1998.7840.
  • Anderson, D. F., Mulay, S. B., On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra., 210 (2007), 543-550, https://doi.org/10.1016/j.jpaa.2006.10.007.
  • Axtel, M., Stickles, J., Zero-divisor graphs of idealizations, J. Pure Appl. Algebra., 204 (2006), 235-243, https://doi.org/10.1016/j.jpaa.2005.04.004.
  • Badawi, A., Darani, A. Y., On weakly 2-absorbing ideals of commutative rings, Houston J. Math., 39 (2013), 441-452.
  • Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75 (2007), 417-429. DOI: https://doi.org/10.1017/S0004972700039344.
  • Beck, I., Coloring of commutative rings, J. Algebra., 116 (1988), 208-226, https://doi.org/10.1016/0021-8693(88)90202-5.
  • Bollaboás, B., Graph Theory, An Introductory Course, Springer-Verlag, New York, 1979.
  • Elele, A. B., Ulucak, G., 3-zero-divisor hypergraph regarding an ideal, 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, 2017, 1-4, doi:10.1109/ICMSAO.2017.7934846.
  • Gilmer, R., Multiplicative ideal theory. Queen's Papers in Pure and Appl. Math., 90, 1992, doi:10.1017/S0008439500031234.
  • Livingston, P. S., Structure in Zero-Divisor Graphs of Commutative Rings, Master Thesis, The University of Tennessee, Knoxville, TN, 1997.
  • Lucas, T. G., The diameter of a zero-divisor graph, J. Algebra 301 (2006), 174-193, https://doi.org/10.1016/j.jalgebra.2006.01.019.
  • Redmond, S. P., On the zero-divisor graphs of small finite commutative rings, Discrete Math., 307 (2007), 1155-1166, https://doi.org/10.1016/j.disc.2006.07.025.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Ece Yetkin Çelikel 0000-0001-6194-656X

Publication Date December 31, 2021
Submission Date August 27, 2020
Acceptance Date February 15, 2021
Published in Issue Year 2021

Cite

APA Yetkin Çelikel, E. (2021). The triple zero graph of a commutative ring. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 653-663. https://doi.org/10.31801/cfsuasmas.786804
AMA Yetkin Çelikel E. The triple zero graph of a commutative ring. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):653-663. doi:10.31801/cfsuasmas.786804
Chicago Yetkin Çelikel, Ece. “The Triple Zero Graph of a Commutative Ring”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 653-63. https://doi.org/10.31801/cfsuasmas.786804.
EndNote Yetkin Çelikel E (December 1, 2021) The triple zero graph of a commutative ring. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 653–663.
IEEE E. Yetkin Çelikel, “The triple zero graph of a commutative ring”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 653–663, 2021, doi: 10.31801/cfsuasmas.786804.
ISNAD Yetkin Çelikel, Ece. “The Triple Zero Graph of a Commutative Ring”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 653-663. https://doi.org/10.31801/cfsuasmas.786804.
JAMA Yetkin Çelikel E. The triple zero graph of a commutative ring. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:653–663.
MLA Yetkin Çelikel, Ece. “The Triple Zero Graph of a Commutative Ring”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 653-6, doi:10.31801/cfsuasmas.786804.
Vancouver Yetkin Çelikel E. The triple zero graph of a commutative ring. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):653-6.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.