Research Article
BibTex RIS Cite

Fixed point theorems to generalize FR- contraction mappings with application to nonlinear matrix equations

Year 2021, , 631 - 652, 31.12.2021
https://doi.org/10.31801/cfsuasmas.793098

Abstract

In the present paper, we introduce the notion of generalize FR-contraction and establish some fixed point results for such mappings, which extend and generalize the result of Alam and Imdad (J. Fixed Point Theory & Appl., 17(4) (2015), 693-702), Sawangsup et al. (J. Fixed Point Theory, 2016 (2016), 1-15) and many others. Our results reveal that the assumption of M-closedness of underlying binary relation is not necessary condition for existence of fixed point in relational metric spaces. We also derive some N-order fixed point theorems from our main results. As an application of our main result, we find a solution of a certain class of nonlinear matrix equations.

Supporting Institution

Nil

Project Number

Nil

References

  • Alam, A., Imdad, M., Relation-theoretic contraction principle. J. Fixed Point Theory Appl., 7(4) (2015), 693-702, https://doi.org/10.1007/s11784-015-0247-y.
  • Alam, A., Imdad, M., Relation-theoretic metrical coincidence theorems. Filomat, 31(14) (2017), 4421-4439, https://doi.org/10.2298/fil1714421a.
  • Altun, I., Aslantas, M., Sahin, H., Best proximity point results for p-proximal contractions. Acta Math. Hungar., 162(2) (2020), 393–402, https://doi.org/10.1007/s10474-020-01036-3.
  • Aslantas, M., Sahin, H., Altun, I., Best proximity point theorems for cyclic p-contractions with some consequences and applications. Nonlinear Analysis: Modelling and Control, 26(1) (2021), 113–129, https://doi.org/10.15388/namc.2021.26.21415.
  • Aslantas, M., Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), (2021), 483-496, https://doi.org/10.31801/cfsuasmas.780729.
  • Aslantas, M., Sahin, H., Turkoglu, D., Some Caristi type fixed point theorems. The Journal of Analysis, (2020), 1-15, https://doi.org/10.1007/s41478-020-00248-8.
  • Banach, S., Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3 (1922), 133-181.
  • Berzig, M., Samet, B., Solving systems of nonlinear matrix equations involving Lipschitzian mappings. Fixed point Theory Appl., 1 (2011), Article No. 89, https://doi.org/10.1186/ 1687-1812-2011-89.
  • Berzig, M., Solving a class of matrix equations via the Bhaskar-Lakshmikantham coupled fixed point theorem. Appl. Math. Lett., 25(11) (2012), 1638-1643, https://doi.org/10.1016/j.aml.2012.01.028.
  • Durmaz, G., Minak, G., Altun, I., Fixed points of ordered F-contractions. Hacettepe J. Math. and Stat., 45(1) (2016), 15-21, https:doi.org/10.15672/HJMS.20164512482.
  • Imdad, M., Gubran, R., Arif, M., Gopal, D., An observation on α-type F-contractions and some ordered-theoretic fixed point results. Math. Sci., 11(3) (2017), 247-255, https://doi.org/10.1007/s40096-017-0231-3.
  • Khantwal, D., Gairola, U. C., An extension of Matkowski's and Wardowski's fixed point theorems with applications to functional equations. Aequationes math., 93(2) (2019), 433-443, https://doi.org/10.1007/s00010-018-0562-7.
  • Khantwal, D., Aneja, S., Prasad, G., Gairola, U. C., A generalization of relation-theoretic contraction principle. TWMS J. App. Eng. Math., (Accepted).
  • Khantwal, D., Aneja, S., Prasad, G., Joshi, B. C., Gairola, U. C., Multivalued relational graph contraction principle with applications. (Communicated).
  • Kolman, B., Busby, R. C., Ross, S., Discrete Mathematical Structures. 3rd ed., PHI Pvt. Ltd., New Delhi, 2000.
  • Pant, A., Pant., R. P., Fixed points and continuity of contractive maps. Filomat, 31(11) (2017), 3501-3506, https://doi.org/10.2298/fil1711501p.
  • Piri, H., Kumam, P., Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl., 1 (2014), Article No. 210, https://doi:10.1186/ 1687-1812-2014-210.
  • Ran, A. C. M., Reurings, M. C. B., A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc., 132(5) (2003), 1435-1443, https://doi.org/10.1090/S0002-9939-03-07220-4.
  • Sahin, H., Altun, I., Turkoglu, D., Two fixed point results for multivalued F-contractions on M-metric spaces. RACSAM, 113 (2019), 1839-1849, https://doi.org/10.1007/s13398-018-0585-x.
  • Sahin, H., Aslantas, M., Altun, I., Feng-Liu type approach to best proximity point results for multivalued mappings, J. Fixed Point Theory Appl., 22 (2020), https://doi.org/10.1007/ s11784-019-0740-9.
  • Sahin, H., Best proximity point theory on vector metric spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 70(1) (2021), https://doi.org/10.31801/cfsuasmas.780723.
  • Samet, B., Turinici, M., Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications. Commun. Math. Anal., 13(2) (2012), 82-97, https://doi.org/10.1163/156855399x00162.
  • Sawangsup, K., Sintunavarat, W., Hierro, A. F. R. L. de, Fixed point theorems for FR-contractions with applications to solution of nonlinear matrix equations. J. Fixed Point Theory Appl., 19(3) (2017), 1711-1725, https://doi.org/10.1007/s11784-016-0306-z.
  • Sawangsup, K., Sintunavarat, W., On modified Z-contractions and an iterative scheme for solving nonlinear matrix equations. J. Fixed Point Theory Appl., 20 (2018), Article No. 80, https://doi.org/10.1007/s11784-018-0563-0.
  • Shukla, S., Rodríguez-López, R., Fixed points of multi-valued relation theoretic contractions in metric spaces and application. Quaestiones Mathematicae, 43(3), (2021), 409-424
  • Wardowski, D., Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl., 1 (2012), Article No. 94, https://doi.org/10.1186/ 1687-1812-2012-94.
  • Wardowski, D., Van Dung, N., Fixed points of F-weak contractions on complete metric spaces. Demonstr. Math., 47(1) (2014), 146-155, https://doi.org/10.2478/dema-2014-0012.
Year 2021, , 631 - 652, 31.12.2021
https://doi.org/10.31801/cfsuasmas.793098

Abstract

Project Number

Nil

References

  • Alam, A., Imdad, M., Relation-theoretic contraction principle. J. Fixed Point Theory Appl., 7(4) (2015), 693-702, https://doi.org/10.1007/s11784-015-0247-y.
  • Alam, A., Imdad, M., Relation-theoretic metrical coincidence theorems. Filomat, 31(14) (2017), 4421-4439, https://doi.org/10.2298/fil1714421a.
  • Altun, I., Aslantas, M., Sahin, H., Best proximity point results for p-proximal contractions. Acta Math. Hungar., 162(2) (2020), 393–402, https://doi.org/10.1007/s10474-020-01036-3.
  • Aslantas, M., Sahin, H., Altun, I., Best proximity point theorems for cyclic p-contractions with some consequences and applications. Nonlinear Analysis: Modelling and Control, 26(1) (2021), 113–129, https://doi.org/10.15388/namc.2021.26.21415.
  • Aslantas, M., Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), (2021), 483-496, https://doi.org/10.31801/cfsuasmas.780729.
  • Aslantas, M., Sahin, H., Turkoglu, D., Some Caristi type fixed point theorems. The Journal of Analysis, (2020), 1-15, https://doi.org/10.1007/s41478-020-00248-8.
  • Banach, S., Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3 (1922), 133-181.
  • Berzig, M., Samet, B., Solving systems of nonlinear matrix equations involving Lipschitzian mappings. Fixed point Theory Appl., 1 (2011), Article No. 89, https://doi.org/10.1186/ 1687-1812-2011-89.
  • Berzig, M., Solving a class of matrix equations via the Bhaskar-Lakshmikantham coupled fixed point theorem. Appl. Math. Lett., 25(11) (2012), 1638-1643, https://doi.org/10.1016/j.aml.2012.01.028.
  • Durmaz, G., Minak, G., Altun, I., Fixed points of ordered F-contractions. Hacettepe J. Math. and Stat., 45(1) (2016), 15-21, https:doi.org/10.15672/HJMS.20164512482.
  • Imdad, M., Gubran, R., Arif, M., Gopal, D., An observation on α-type F-contractions and some ordered-theoretic fixed point results. Math. Sci., 11(3) (2017), 247-255, https://doi.org/10.1007/s40096-017-0231-3.
  • Khantwal, D., Gairola, U. C., An extension of Matkowski's and Wardowski's fixed point theorems with applications to functional equations. Aequationes math., 93(2) (2019), 433-443, https://doi.org/10.1007/s00010-018-0562-7.
  • Khantwal, D., Aneja, S., Prasad, G., Gairola, U. C., A generalization of relation-theoretic contraction principle. TWMS J. App. Eng. Math., (Accepted).
  • Khantwal, D., Aneja, S., Prasad, G., Joshi, B. C., Gairola, U. C., Multivalued relational graph contraction principle with applications. (Communicated).
  • Kolman, B., Busby, R. C., Ross, S., Discrete Mathematical Structures. 3rd ed., PHI Pvt. Ltd., New Delhi, 2000.
  • Pant, A., Pant., R. P., Fixed points and continuity of contractive maps. Filomat, 31(11) (2017), 3501-3506, https://doi.org/10.2298/fil1711501p.
  • Piri, H., Kumam, P., Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl., 1 (2014), Article No. 210, https://doi:10.1186/ 1687-1812-2014-210.
  • Ran, A. C. M., Reurings, M. C. B., A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc., 132(5) (2003), 1435-1443, https://doi.org/10.1090/S0002-9939-03-07220-4.
  • Sahin, H., Altun, I., Turkoglu, D., Two fixed point results for multivalued F-contractions on M-metric spaces. RACSAM, 113 (2019), 1839-1849, https://doi.org/10.1007/s13398-018-0585-x.
  • Sahin, H., Aslantas, M., Altun, I., Feng-Liu type approach to best proximity point results for multivalued mappings, J. Fixed Point Theory Appl., 22 (2020), https://doi.org/10.1007/ s11784-019-0740-9.
  • Sahin, H., Best proximity point theory on vector metric spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 70(1) (2021), https://doi.org/10.31801/cfsuasmas.780723.
  • Samet, B., Turinici, M., Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications. Commun. Math. Anal., 13(2) (2012), 82-97, https://doi.org/10.1163/156855399x00162.
  • Sawangsup, K., Sintunavarat, W., Hierro, A. F. R. L. de, Fixed point theorems for FR-contractions with applications to solution of nonlinear matrix equations. J. Fixed Point Theory Appl., 19(3) (2017), 1711-1725, https://doi.org/10.1007/s11784-016-0306-z.
  • Sawangsup, K., Sintunavarat, W., On modified Z-contractions and an iterative scheme for solving nonlinear matrix equations. J. Fixed Point Theory Appl., 20 (2018), Article No. 80, https://doi.org/10.1007/s11784-018-0563-0.
  • Shukla, S., Rodríguez-López, R., Fixed points of multi-valued relation theoretic contractions in metric spaces and application. Quaestiones Mathematicae, 43(3), (2021), 409-424
  • Wardowski, D., Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl., 1 (2012), Article No. 94, https://doi.org/10.1186/ 1687-1812-2012-94.
  • Wardowski, D., Van Dung, N., Fixed points of F-weak contractions on complete metric spaces. Demonstr. Math., 47(1) (2014), 146-155, https://doi.org/10.2478/dema-2014-0012.
There are 27 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Deepak Khantwal 0000-0002-1081-226X

Swati Antal This is me 0000-0001-5517-0021

U.c. Gairola 0000-0002-3981-1033

Project Number Nil
Publication Date December 31, 2021
Submission Date September 10, 2020
Acceptance Date March 17, 2021
Published in Issue Year 2021

Cite

APA Khantwal, D., Antal, S., & Gairola, U. (2021). Fixed point theorems to generalize FR- contraction mappings with application to nonlinear matrix equations. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 631-652. https://doi.org/10.31801/cfsuasmas.793098
AMA Khantwal D, Antal S, Gairola U. Fixed point theorems to generalize FR- contraction mappings with application to nonlinear matrix equations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):631-652. doi:10.31801/cfsuasmas.793098
Chicago Khantwal, Deepak, Swati Antal, and U.c. Gairola. “Fixed Point Theorems to Generalize FR- Contraction Mappings With Application to Nonlinear Matrix Equations”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 631-52. https://doi.org/10.31801/cfsuasmas.793098.
EndNote Khantwal D, Antal S, Gairola U (December 1, 2021) Fixed point theorems to generalize FR- contraction mappings with application to nonlinear matrix equations. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 631–652.
IEEE D. Khantwal, S. Antal, and U. Gairola, “Fixed point theorems to generalize FR- contraction mappings with application to nonlinear matrix equations”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 631–652, 2021, doi: 10.31801/cfsuasmas.793098.
ISNAD Khantwal, Deepak et al. “Fixed Point Theorems to Generalize FR- Contraction Mappings With Application to Nonlinear Matrix Equations”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 631-652. https://doi.org/10.31801/cfsuasmas.793098.
JAMA Khantwal D, Antal S, Gairola U. Fixed point theorems to generalize FR- contraction mappings with application to nonlinear matrix equations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:631–652.
MLA Khantwal, Deepak et al. “Fixed Point Theorems to Generalize FR- Contraction Mappings With Application to Nonlinear Matrix Equations”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 631-52, doi:10.31801/cfsuasmas.793098.
Vancouver Khantwal D, Antal S, Gairola U. Fixed point theorems to generalize FR- contraction mappings with application to nonlinear matrix equations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):631-52.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.