Research Article
BibTex RIS Cite
Year 2021, , 910 - 923, 31.12.2021
https://doi.org/10.31801/cfsuasmas.808319

Abstract

References

  • Bulut, S., Fekete-Szegö problem for starlike functions connected with k-Fibonacci numbers, Math. Slovaca, 71 (4) (2021), 823-830. doi: 10.1515/ms-2021-0023
  • Duren, P. L., Univalent Functions, Grundlehren der Mathematics. Wissenschaften, Bd, Springer-Verlag, NewYork, 1983.
  • Falcon, S., Plaza, A., The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals, 33 (1) (2007), 38-49. doi: 10.1016/j.chaos.2006.10.022
  • Grenander, U., Szegö, G., Toeplitz forms and their applications, Univ. of California Press, Berkeley, Los Angeles, 1958.
  • Güney, H. Ö., Sokol, J., İlhan, S., Second Hankel determinant problem for some analytic function classes with connected k-Fibonacci numbers, Acta Univ. Apulensis Math. Inform., 54 (2018), 161-174. doi: 10.17114/j.aua.2018.54.11
  • Güney, H. Ö., İlhan, S., Sokol, J., An upper bound for third Hankel determinant of starlike functions connected with k-Fibonacci numbers, Bol. Soc. Mat. Mex. (3), 25 (1) (2019), 117-129. doi: 10.1007/s40590-017-0190-6
  • Kalman, D., Mena, R., The Fibonacci numbers-exposed, Math. Mag., 76 (3) (2003), 167-181. doi: 10.2307/3219318.
  • Kayumov, I. R., On Brennan's conjecture for a special class of functions, Math. Notes, 78 (2005), 498-502. doi: 10.1007/s11006-005-0149-1
  • Raina, R. K., Sokol, J., Fekete-Szegö problem for some starlike functions related to shell-like curves, Math. Slovaca, 66 (1) (2016), 135-140. doi: 10.1515/ms-2015-0123
  • Sokol, J., On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis, 175 (23) (1999), 111-116.
  • Sokol, J., Raina, R. K., Yılmaz Özgür, N., Applications of k-Fibonacci numbers for the starlike analytic functions, Hacettepe J. Math. Stat., 44 (1) (2015), 121-127. doi:10.15672/HJMS.2015449091
  • Şiar, Z., Keskin, R., Some new identities concerning generalized Fibonacci and Lucas numbers, Hacet. J. Math. Stat., 42 (3) (2013), 211-222.
  • Yılmaz Özgür, N., Sokol, J., On starlike functions connected with k-Fibonacci numbers, Bull. Malays. Math. Sci. Soc., 38 (1) (2015), 249-258. doi: 10.1007/s40840-014-0016-x.
  • Yılmaz Özgür, N., Uçar, S., Öztunç, Ö., Complex factorizations of the k-Fibonacci and k-Lucas numbers, An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 62 (1) (2016), 13-20.

Logarithmic coefficients of starlike functions connected with k-Fibonacci numbers

Year 2021, , 910 - 923, 31.12.2021
https://doi.org/10.31801/cfsuasmas.808319

Abstract

Let $\mathcal{A}$ denote the class of analytic functions in the open unit disc $\mathbb{U}$ normalized by $f(0)=f^{\prime }(0)-1=0,$ and let $\mathcal{S}$ be the class of all functions $f\in\mathcal{A}$ which are univalent in $\mathbb{U}$. For a function $f\in \mathcal{S}$, the logarithmic coefficients $\delta _{n}\,\left( n=1,2,3,\ldots \right) $ are defined by
$\log \frac{f(z)}{z}=2\sum_{n=1}^{\infty }\delta _{n}z^{n}\qquad \left( z\in\mathbb{U}\right).$
and it is known that $\left\vert \delta _{1}\right\vert \leq 1$ and $\left\vert \delta _{2}\right\vert \leq \frac{1}{2}\left( 1+2e^{-2}\right)=0,635\cdots .$ The problem of the best upper bounds for $\left\vert \delta_{n}\right\vert $ of univalent functions for $n\geq 3$ is still open. Let $\mathcal{SL}^{k}$ denote the class of functions $f\in \mathcal{A}$ such that
$\frac{zf^{\prime }\left( z\right) }{f(z)}\prec \frac{1+\tau _{k}^{2}z^{2}}{1-k\tau _{k}z-\tau _{k}^{2}z^{2}},\quad \tau _{k}=\frac{k-\sqrt{k^{2}+4}}{2}\qquad \left( z\in \mathbb{U}\right).$
In the present paper, we determine the sharp upper bound for $\left\vert\delta _{1}\right\vert ,\left\vert \delta _{2}\right\vert $ and $\left\vert\delta _{3}\right\vert $ for functions $f$ belong to the class $\mathcal{SL}^{k}$ which is a subclass of $\mathcal{S}$. Furthermore, a general formula is given for $\left\vert \delta _{n}\right\vert \,\left( n\in \mathbb{N}\right) $ as a conjecture.

References

  • Bulut, S., Fekete-Szegö problem for starlike functions connected with k-Fibonacci numbers, Math. Slovaca, 71 (4) (2021), 823-830. doi: 10.1515/ms-2021-0023
  • Duren, P. L., Univalent Functions, Grundlehren der Mathematics. Wissenschaften, Bd, Springer-Verlag, NewYork, 1983.
  • Falcon, S., Plaza, A., The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals, 33 (1) (2007), 38-49. doi: 10.1016/j.chaos.2006.10.022
  • Grenander, U., Szegö, G., Toeplitz forms and their applications, Univ. of California Press, Berkeley, Los Angeles, 1958.
  • Güney, H. Ö., Sokol, J., İlhan, S., Second Hankel determinant problem for some analytic function classes with connected k-Fibonacci numbers, Acta Univ. Apulensis Math. Inform., 54 (2018), 161-174. doi: 10.17114/j.aua.2018.54.11
  • Güney, H. Ö., İlhan, S., Sokol, J., An upper bound for third Hankel determinant of starlike functions connected with k-Fibonacci numbers, Bol. Soc. Mat. Mex. (3), 25 (1) (2019), 117-129. doi: 10.1007/s40590-017-0190-6
  • Kalman, D., Mena, R., The Fibonacci numbers-exposed, Math. Mag., 76 (3) (2003), 167-181. doi: 10.2307/3219318.
  • Kayumov, I. R., On Brennan's conjecture for a special class of functions, Math. Notes, 78 (2005), 498-502. doi: 10.1007/s11006-005-0149-1
  • Raina, R. K., Sokol, J., Fekete-Szegö problem for some starlike functions related to shell-like curves, Math. Slovaca, 66 (1) (2016), 135-140. doi: 10.1515/ms-2015-0123
  • Sokol, J., On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis, 175 (23) (1999), 111-116.
  • Sokol, J., Raina, R. K., Yılmaz Özgür, N., Applications of k-Fibonacci numbers for the starlike analytic functions, Hacettepe J. Math. Stat., 44 (1) (2015), 121-127. doi:10.15672/HJMS.2015449091
  • Şiar, Z., Keskin, R., Some new identities concerning generalized Fibonacci and Lucas numbers, Hacet. J. Math. Stat., 42 (3) (2013), 211-222.
  • Yılmaz Özgür, N., Sokol, J., On starlike functions connected with k-Fibonacci numbers, Bull. Malays. Math. Sci. Soc., 38 (1) (2015), 249-258. doi: 10.1007/s40840-014-0016-x.
  • Yılmaz Özgür, N., Uçar, S., Öztunç, Ö., Complex factorizations of the k-Fibonacci and k-Lucas numbers, An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 62 (1) (2016), 13-20.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Serap Bulut 0000-0002-6506-4588

Publication Date December 31, 2021
Submission Date October 9, 2020
Acceptance Date May 16, 2021
Published in Issue Year 2021

Cite

APA Bulut, S. (2021). Logarithmic coefficients of starlike functions connected with k-Fibonacci numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 910-923. https://doi.org/10.31801/cfsuasmas.808319
AMA Bulut S. Logarithmic coefficients of starlike functions connected with k-Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):910-923. doi:10.31801/cfsuasmas.808319
Chicago Bulut, Serap. “Logarithmic Coefficients of Starlike Functions Connected With K-Fibonacci Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 910-23. https://doi.org/10.31801/cfsuasmas.808319.
EndNote Bulut S (December 1, 2021) Logarithmic coefficients of starlike functions connected with k-Fibonacci numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 910–923.
IEEE S. Bulut, “Logarithmic coefficients of starlike functions connected with k-Fibonacci numbers”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 910–923, 2021, doi: 10.31801/cfsuasmas.808319.
ISNAD Bulut, Serap. “Logarithmic Coefficients of Starlike Functions Connected With K-Fibonacci Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 910-923. https://doi.org/10.31801/cfsuasmas.808319.
JAMA Bulut S. Logarithmic coefficients of starlike functions connected with k-Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:910–923.
MLA Bulut, Serap. “Logarithmic Coefficients of Starlike Functions Connected With K-Fibonacci Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 910-23, doi:10.31801/cfsuasmas.808319.
Vancouver Bulut S. Logarithmic coefficients of starlike functions connected with k-Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):910-23.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.