Research Article
BibTex RIS Cite
Year 2021, , 837 - 848, 31.12.2021
https://doi.org/10.31801/cfsuasmas.869893

Abstract

References

  • Astashkin, S. V., Maligranda, L., Structure of Cesàro function spaces, Indag. Math. (N.S.), 20(3) (2009), 329-379. https://dx.doi.org/10.1016/S0019-3577(10)00002-9
  • Astashkin, S. V., Maligranda, L., Structure of Cesàro function spaces: a survey, Banach Center Publications, 102 (2014), 13-40. https://dx.doi.org/10.4064/bc102-0-1
  • Barza, S., Marcoci, A. N., Marcoci, L. G., Factorizations of weighted Hardy inequalities, Bull. Braz. Math. Soc. (N.S.), 49(4) (2018), 915-932. https://dx.doi.org/10.1007/s00574-018-0087-7
  • Bennett, G., Factorizing the classical inequalities, Mem. Amer. Math. Soc., 120 (576) (1996). https://dx.doi.org/10.1090/memo/0576
  • Boas, R. P., Jr., Some integral inequalities related to Hardy's inequality, J. Analyse Math., 23 (1970), 53-63. https://dx.doi.org/10.1007/BF02795488
  • Carro, M., Gogatishvili, A., Martín, J., Pick, L., Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces, J. Operator Theory, 59(2) (2008), 309-332.
  • Evans, W. D., Gogatishvili, A., Opic, B., The reverse Hardy inequality with measures, Math. Inequal. Appl., 11(1) (2008), 43-74. https://dx.doi.org/10.7153/mia-11-03
  • Gogatishvili, A., Mustafayev, R. Ch., Persson, L. E., Some new iterated Hardy-type inequalities, J. Funct. Spaces Appl., Art. ID 734194, (2012). https://dx.doi.org/10.1155/2012/734194
  • Gogatishvili, A., Mustafayev, R. Ch., Ünver, T., Embeddings between weighted Copson and Cesàro function spaces, Czechoslovak Math. J., 67(4) (2017), 1105-1132. https://dx.doi.org/10.21136/CMJ.2017.0424-16
  • Gogatishvili, A., Mustafayev, R. Ch., Ünver, T., Pointwise multipliers between weighted Copson and Cesàro function spaces, Math. Slovaca, 69(6) (2019), 1303-1328. https://dx.doi.org/10.1515/ms-2017-0310
  • Grosse-Erdmann, K.-G., The blocking technique, weighted mean operators and Hardy's inequality, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1998. https://dx.doi.org/10.1007/BFb0093486
  • Hassard, B. D., Hussein, D. A., On Cesàro function spaces, Tamkang J. Math., 4 (1973), 19-25.
  • Kaminska, A., Kubiak, D., On the dual of Cesàro function space, Nonlinear Anal., 75(5) (2012), 2760-2773. https://dx.doi.org/10.1016/j.na.2011.11.019
  • Kolwicz, P., Le´snik, K., Maligranda, L., Symmetrization, factorization and arithmetic of quasi-Banach function spaces, J. Math. Anal. Appl., 470(2) (2019), 1136-1166. https://dx.doi.org/10.1016/j.jmaa.2018.10.054
  • Kufner, A., Persson, L. -E., Samko, N., Weighted Inequalities of Hardy Type, Second Ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. https://dx.doi.org/10.1142/10052
  • Le´snik, K., Maligranda, L., Abstract Cesàro spaces. Duality, J. Math. Anal. Appl., 424(2) (2015), 932-951. https://dx.doi.org/10.1016/j.jmaa.2014.11.023
  • Le´snik, K., Maligranda, L., Abstract Cesàro spaces. Optimal range, Integral Equations Operator Theory, 81(2) (2015), 227-235. https://dx.doi.org/10.1007/s00020-014-2203-4
  • Le´snik, K., Maligranda, L., Interpolation of abstract Cesàro, Copson and Tandori spaces, Indag. Math. (N.S.), 27(3) (2016), 764-785. https://dx.doi.org/10.1016/j.indag.2016.01.009
  • Mustafayev, R. Ch., Ünver, T., Reverse Hardy-type inequalities for supremal operators with measures, Math. Inequal. Appl., 18(4) (2015), 1295-1311. https://dx.doi.org/10.7153/mia-18-101
  • Shiue, J. -S., A note on Cesàro function space, Tamkang J. Math., 1 (1970), 91-95.
  • Sy, P. W., Zhang, W. Y., Lee, P. Y., The dual of Cesàro function spaces, Glas. Mat. Ser. III, 22(42) (1) (1987), 103-112.
  • Tandori, K., Über einen speziellen Banachschen Raum, Publ. Math. Debrecen, 3 (1954), 263-268.

Embeddings between weighted Tandori and Cesàro function spaces

Year 2021, , 837 - 848, 31.12.2021
https://doi.org/10.31801/cfsuasmas.869893

Abstract

We characterize the weights for which the two-operator inequality
(x0f(t)pv(t)pdt)1pq,u,(0,)cesssupt(x,)f(t)r,w,(0,)‖(∫0xf(t)pv(t)pdt)1p‖q,u,(0,∞)≤c‖esssupt∈(x,∞)f(t)‖r,w,(0,∞)
holds for all non-negative measurable functions on (0,)(0,∞), where 0<p<q0<p<q≤∞ and 0<r<0<r<∞, namely, we find the least constants in the embeddings between weighted Tandori and Ces\`{a}ro function spaces. We use the combination of duality arguments for weighted Lebesgue spaces and weighted Tandori spaces with weighted estimates for the iterated integral operators.

References

  • Astashkin, S. V., Maligranda, L., Structure of Cesàro function spaces, Indag. Math. (N.S.), 20(3) (2009), 329-379. https://dx.doi.org/10.1016/S0019-3577(10)00002-9
  • Astashkin, S. V., Maligranda, L., Structure of Cesàro function spaces: a survey, Banach Center Publications, 102 (2014), 13-40. https://dx.doi.org/10.4064/bc102-0-1
  • Barza, S., Marcoci, A. N., Marcoci, L. G., Factorizations of weighted Hardy inequalities, Bull. Braz. Math. Soc. (N.S.), 49(4) (2018), 915-932. https://dx.doi.org/10.1007/s00574-018-0087-7
  • Bennett, G., Factorizing the classical inequalities, Mem. Amer. Math. Soc., 120 (576) (1996). https://dx.doi.org/10.1090/memo/0576
  • Boas, R. P., Jr., Some integral inequalities related to Hardy's inequality, J. Analyse Math., 23 (1970), 53-63. https://dx.doi.org/10.1007/BF02795488
  • Carro, M., Gogatishvili, A., Martín, J., Pick, L., Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces, J. Operator Theory, 59(2) (2008), 309-332.
  • Evans, W. D., Gogatishvili, A., Opic, B., The reverse Hardy inequality with measures, Math. Inequal. Appl., 11(1) (2008), 43-74. https://dx.doi.org/10.7153/mia-11-03
  • Gogatishvili, A., Mustafayev, R. Ch., Persson, L. E., Some new iterated Hardy-type inequalities, J. Funct. Spaces Appl., Art. ID 734194, (2012). https://dx.doi.org/10.1155/2012/734194
  • Gogatishvili, A., Mustafayev, R. Ch., Ünver, T., Embeddings between weighted Copson and Cesàro function spaces, Czechoslovak Math. J., 67(4) (2017), 1105-1132. https://dx.doi.org/10.21136/CMJ.2017.0424-16
  • Gogatishvili, A., Mustafayev, R. Ch., Ünver, T., Pointwise multipliers between weighted Copson and Cesàro function spaces, Math. Slovaca, 69(6) (2019), 1303-1328. https://dx.doi.org/10.1515/ms-2017-0310
  • Grosse-Erdmann, K.-G., The blocking technique, weighted mean operators and Hardy's inequality, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1998. https://dx.doi.org/10.1007/BFb0093486
  • Hassard, B. D., Hussein, D. A., On Cesàro function spaces, Tamkang J. Math., 4 (1973), 19-25.
  • Kaminska, A., Kubiak, D., On the dual of Cesàro function space, Nonlinear Anal., 75(5) (2012), 2760-2773. https://dx.doi.org/10.1016/j.na.2011.11.019
  • Kolwicz, P., Le´snik, K., Maligranda, L., Symmetrization, factorization and arithmetic of quasi-Banach function spaces, J. Math. Anal. Appl., 470(2) (2019), 1136-1166. https://dx.doi.org/10.1016/j.jmaa.2018.10.054
  • Kufner, A., Persson, L. -E., Samko, N., Weighted Inequalities of Hardy Type, Second Ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. https://dx.doi.org/10.1142/10052
  • Le´snik, K., Maligranda, L., Abstract Cesàro spaces. Duality, J. Math. Anal. Appl., 424(2) (2015), 932-951. https://dx.doi.org/10.1016/j.jmaa.2014.11.023
  • Le´snik, K., Maligranda, L., Abstract Cesàro spaces. Optimal range, Integral Equations Operator Theory, 81(2) (2015), 227-235. https://dx.doi.org/10.1007/s00020-014-2203-4
  • Le´snik, K., Maligranda, L., Interpolation of abstract Cesàro, Copson and Tandori spaces, Indag. Math. (N.S.), 27(3) (2016), 764-785. https://dx.doi.org/10.1016/j.indag.2016.01.009
  • Mustafayev, R. Ch., Ünver, T., Reverse Hardy-type inequalities for supremal operators with measures, Math. Inequal. Appl., 18(4) (2015), 1295-1311. https://dx.doi.org/10.7153/mia-18-101
  • Shiue, J. -S., A note on Cesàro function space, Tamkang J. Math., 1 (1970), 91-95.
  • Sy, P. W., Zhang, W. Y., Lee, P. Y., The dual of Cesàro function spaces, Glas. Mat. Ser. III, 22(42) (1) (1987), 103-112.
  • Tandori, K., Über einen speziellen Banachschen Raum, Publ. Math. Debrecen, 3 (1954), 263-268.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Tuğçe Unver Yıldız 0000-0003-0414-8400

Publication Date December 31, 2021
Submission Date January 28, 2021
Acceptance Date April 25, 2021
Published in Issue Year 2021

Cite

APA Unver Yıldız, T. (2021). Embeddings between weighted Tandori and Cesàro function spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 837-848. https://doi.org/10.31801/cfsuasmas.869893
AMA Unver Yıldız T. Embeddings between weighted Tandori and Cesàro function spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):837-848. doi:10.31801/cfsuasmas.869893
Chicago Unver Yıldız, Tuğçe. “Embeddings Between Weighted Tandori and Cesàro Function Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 837-48. https://doi.org/10.31801/cfsuasmas.869893.
EndNote Unver Yıldız T (December 1, 2021) Embeddings between weighted Tandori and Cesàro function spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 837–848.
IEEE T. Unver Yıldız, “Embeddings between weighted Tandori and Cesàro function spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 837–848, 2021, doi: 10.31801/cfsuasmas.869893.
ISNAD Unver Yıldız, Tuğçe. “Embeddings Between Weighted Tandori and Cesàro Function Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 837-848. https://doi.org/10.31801/cfsuasmas.869893.
JAMA Unver Yıldız T. Embeddings between weighted Tandori and Cesàro function spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:837–848.
MLA Unver Yıldız, Tuğçe. “Embeddings Between Weighted Tandori and Cesàro Function Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 837-48, doi:10.31801/cfsuasmas.869893.
Vancouver Unver Yıldız T. Embeddings between weighted Tandori and Cesàro function spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):837-48.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.