Research Article
BibTex RIS Cite

Helmholtz Equation and WKB Approximation in the Tidal wawe Propagation

Year 1982, , 24 - 33, 01.01.1982
https://doi.org/10.1501/Commua1_0000000116

Abstract

The homoegneous radial equatîon of atmospheric tides has heen solved numerically, th- rouh its analogy with the Helmholtz equation, adoptig a realistle temperature strueture below 110 km. Insight intto the properties of the media, a linear law for the variable coefficent is assu- med and the relationships between exact Solutions of the equation and the WKB

References

  • Ankara Üniversitesi Communications, Series A1:Mathematics and Statistics
Year 1982, , 24 - 33, 01.01.1982
https://doi.org/10.1501/Commua1_0000000116

Abstract

References

  • Ankara Üniversitesi Communications, Series A1:Mathematics and Statistics
There are 1 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Samuel H. Makarıous This is me

Publication Date January 1, 1982
Submission Date January 1, 1982
Published in Issue Year 1982

Cite

APA Makarıous, S. H. (1982). Helmholtz Equation and WKB Approximation in the Tidal wawe Propagation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 31, 24-33. https://doi.org/10.1501/Commua1_0000000116
AMA Makarıous SH. Helmholtz Equation and WKB Approximation in the Tidal wawe Propagation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. January 1982;31:24-33. doi:10.1501/Commua1_0000000116
Chicago Makarıous, Samuel H. “Helmholtz Equation and WKB Approximation in the Tidal Wawe Propagation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 31, January (January 1982): 24-33. https://doi.org/10.1501/Commua1_0000000116.
EndNote Makarıous SH (January 1, 1982) Helmholtz Equation and WKB Approximation in the Tidal wawe Propagation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 31 24–33.
IEEE S. H. Makarıous, “Helmholtz Equation and WKB Approximation in the Tidal wawe Propagation”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 31, pp. 24–33, 1982, doi: 10.1501/Commua1_0000000116.
ISNAD Makarıous, Samuel H. “Helmholtz Equation and WKB Approximation in the Tidal Wawe Propagation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 31 (January 1982), 24-33. https://doi.org/10.1501/Commua1_0000000116.
JAMA Makarıous SH. Helmholtz Equation and WKB Approximation in the Tidal wawe Propagation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 1982;31:24–33.
MLA Makarıous, Samuel H. “Helmholtz Equation and WKB Approximation in the Tidal Wawe Propagation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 31, 1982, pp. 24-33, doi:10.1501/Commua1_0000000116.
Vancouver Makarıous SH. Helmholtz Equation and WKB Approximation in the Tidal wawe Propagation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 1982;31:24-33.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.