Research Article
BibTex RIS Cite
Year 2021, , 1099 - 1112, 31.12.2021
https://doi.org/10.31801/cfsuasmas.898637

Abstract

Supporting Institution

ADÜ, BAP Doktora Projesi

Project Number

FEF-17041

References

  • Al-Bahrani, B. H., On purely y-extending modules, Iraqi Journal of Science, 54(3) (2013), 672-675.
  • El-Bast, Z. Abd, Smith, P. F., Multiplication modules, Comm. In Algebra, 16(4) (1988), 755-779. https://doi.org/10.1080/00927878808823601
  • Anderson, F. W., Fuller, K. R., Rings and Categories of Modules. Graduate Texts in Math., No:13, Springer Verlag, New York, 1974. https://doi.org/10.1007/978-1-4612-4418-9
  • Asgari, Sh., Haghany, A., T-extending modules and t-Baer modules, Communications in Algebra, 39(5) (2011), 1605-1623. https://doi.org/10.1080/00927871003677519
  • Barnard, A., Multiplication modules, Journal of Algebra, 71 (1981), 174-178. https://doi.org/10.1016/0021-8693(81)90112-5
  • Berktaş, M. K., Dogruöz, S., Tarhan, A., Pure closed subobjects and pure quotient Goldie dimension, JP Journal of Algebra, Number Theory and Applications, 41(1) (2019), 49-57. https://doi.org/10.17654/NT041010049
  • Chatters, A. W., Hajarnavis, C. R., Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford, 28(1) (1977), 61-80. https://doi.org/10.1093/qmath/28.1.61
  • Clark, J., On purely extending modules, The Proceedings of the International Conference in Abelian Groups and Modules, (1999), 353-358. https://doi.org/10.1007/978-3-0348-7591-2-29
  • Clark, J., Lomp, C., Vanaja, N., Wisbauer, R., Lifting Modules, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2006. https://doi.org/10.1007/3-7643-7573-6
  • Cohn, P. M., On the free product of associative rings, Math. Zeitchr. 71 (1959), 380-398. https://doi.org/10.1007/BF01181410
  • Crivei, S., Relatively extending modules, Algebr. Represent. Theor., 12(2-5) (2009), 319-332. https://doi.org/10.1007/s10468-009-9155-4
  • Çeken, S., Alkan, M., On τ-extending modules, Mediterranean Journal of Mathematics, 9(1) (2012), 129-142. https://doi.org/10.1007/s00009-010-0096-2
  • Doğruöz, S., Classes of extending modules associated with a torsion theory, East-West Journal of Mathematics, 8(2) (2006), 163-180.
  • Doğruöz, S., Harmancı, A., Smith, P. F., Modules with unique closure relative to a torsion theory I, Canadian Math. Bull., 53(2) (2010), 230-238. https://doi:10.3906/mat-0712-16
  • Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R., Extending Modules, Longman, Harlow, 1994. https://doi.org/10.1201/9780203756331
  • Ertaş, N. O., Fully Idempotent and multiplication modules, Palestine Journal of Mathematics, 3 (2014), 432-437.
  • Fieldhouse, D. J., Purity and Flatness, Ph.D. Thesis, Department of Mathematics McGill University, Montreal, Canada, July 1967.
  • Fuchs, L., Note on generalized continuous modules, preprint, (1995).
  • Golan, J. S., Torsion Theories, Longman, New York, 1986.
  • Gomez Pardo, J. L., Spectral Gabriel topologies and relative singular functors, Comm. Algebra, 13(1) (1985), 21-57. https://doi.org/10.1080/00927878508823147
  • Goodearl, K. R., Ring Theory, Nonsingular Rings and Modules, Marcel Dekker, New York, 1976.
  • Goodearl, K. R., Warfield, R. B., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989. https://doi.org/10.1017/CBO9780511841699
  • Harmancı, A., Smith, P. F., Finite direct sum of CS-modules, Houston J. Math., 19(4), (1993), 523-532.
  • Kamal, M. A., Muller, B. J., Extending modules over commutative domains, Osaka J. Math., 25 (1988), 531-538.
  • Lam, T. Y., Lectures on Modules and Rings, Graduate Texts in Mathematics, 189 Springer-Verlag New York, 1999. https://doi.org/10.1007/978-1-4612-0525-8
  • Rotman, J. J., An Introduction to Homological Algebra, Academic Press, New York, 1979. https://doi.org/ 10.1007/978-0-387-68324-9
  • Smith, P. F., Modules for which every submodule has a unique closure, Ring Theory Conference, World Scientific, New Jersey, (1993), 302-313.
  • Strenström, B., Rings of Quotients, Springer-Verlag, 1975.
  • Tsai, C. T., Report on Injective Modules, Queen’s Paper in Pure and Applied Mathematics, No.6, Kingston, Ontario: Queen’s University, 1965.
  • Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, 1991. https://doi.org/10.1201/9780203755532

A generalization of purely extending modules relative to a torsion theory

Year 2021, , 1099 - 1112, 31.12.2021
https://doi.org/10.31801/cfsuasmas.898637

Abstract

In this work we introduce a new concept, namely, τsτs-extending modules (rings) which is torsion-theoretic analogues of extending modules and then we extend many results from extending modules to this new concept. For instance we show that for any ring RR with unit, if $_{R}R$ Ris purely τsτs-extending if and only if every cyclic ττ-nonsingular RR-module is flat. Also, we make a classification for the direct sums of the rings to be purely τsτs-extending.

Project Number

FEF-17041

References

  • Al-Bahrani, B. H., On purely y-extending modules, Iraqi Journal of Science, 54(3) (2013), 672-675.
  • El-Bast, Z. Abd, Smith, P. F., Multiplication modules, Comm. In Algebra, 16(4) (1988), 755-779. https://doi.org/10.1080/00927878808823601
  • Anderson, F. W., Fuller, K. R., Rings and Categories of Modules. Graduate Texts in Math., No:13, Springer Verlag, New York, 1974. https://doi.org/10.1007/978-1-4612-4418-9
  • Asgari, Sh., Haghany, A., T-extending modules and t-Baer modules, Communications in Algebra, 39(5) (2011), 1605-1623. https://doi.org/10.1080/00927871003677519
  • Barnard, A., Multiplication modules, Journal of Algebra, 71 (1981), 174-178. https://doi.org/10.1016/0021-8693(81)90112-5
  • Berktaş, M. K., Dogruöz, S., Tarhan, A., Pure closed subobjects and pure quotient Goldie dimension, JP Journal of Algebra, Number Theory and Applications, 41(1) (2019), 49-57. https://doi.org/10.17654/NT041010049
  • Chatters, A. W., Hajarnavis, C. R., Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford, 28(1) (1977), 61-80. https://doi.org/10.1093/qmath/28.1.61
  • Clark, J., On purely extending modules, The Proceedings of the International Conference in Abelian Groups and Modules, (1999), 353-358. https://doi.org/10.1007/978-3-0348-7591-2-29
  • Clark, J., Lomp, C., Vanaja, N., Wisbauer, R., Lifting Modules, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2006. https://doi.org/10.1007/3-7643-7573-6
  • Cohn, P. M., On the free product of associative rings, Math. Zeitchr. 71 (1959), 380-398. https://doi.org/10.1007/BF01181410
  • Crivei, S., Relatively extending modules, Algebr. Represent. Theor., 12(2-5) (2009), 319-332. https://doi.org/10.1007/s10468-009-9155-4
  • Çeken, S., Alkan, M., On τ-extending modules, Mediterranean Journal of Mathematics, 9(1) (2012), 129-142. https://doi.org/10.1007/s00009-010-0096-2
  • Doğruöz, S., Classes of extending modules associated with a torsion theory, East-West Journal of Mathematics, 8(2) (2006), 163-180.
  • Doğruöz, S., Harmancı, A., Smith, P. F., Modules with unique closure relative to a torsion theory I, Canadian Math. Bull., 53(2) (2010), 230-238. https://doi:10.3906/mat-0712-16
  • Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R., Extending Modules, Longman, Harlow, 1994. https://doi.org/10.1201/9780203756331
  • Ertaş, N. O., Fully Idempotent and multiplication modules, Palestine Journal of Mathematics, 3 (2014), 432-437.
  • Fieldhouse, D. J., Purity and Flatness, Ph.D. Thesis, Department of Mathematics McGill University, Montreal, Canada, July 1967.
  • Fuchs, L., Note on generalized continuous modules, preprint, (1995).
  • Golan, J. S., Torsion Theories, Longman, New York, 1986.
  • Gomez Pardo, J. L., Spectral Gabriel topologies and relative singular functors, Comm. Algebra, 13(1) (1985), 21-57. https://doi.org/10.1080/00927878508823147
  • Goodearl, K. R., Ring Theory, Nonsingular Rings and Modules, Marcel Dekker, New York, 1976.
  • Goodearl, K. R., Warfield, R. B., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989. https://doi.org/10.1017/CBO9780511841699
  • Harmancı, A., Smith, P. F., Finite direct sum of CS-modules, Houston J. Math., 19(4), (1993), 523-532.
  • Kamal, M. A., Muller, B. J., Extending modules over commutative domains, Osaka J. Math., 25 (1988), 531-538.
  • Lam, T. Y., Lectures on Modules and Rings, Graduate Texts in Mathematics, 189 Springer-Verlag New York, 1999. https://doi.org/10.1007/978-1-4612-0525-8
  • Rotman, J. J., An Introduction to Homological Algebra, Academic Press, New York, 1979. https://doi.org/ 10.1007/978-0-387-68324-9
  • Smith, P. F., Modules for which every submodule has a unique closure, Ring Theory Conference, World Scientific, New Jersey, (1993), 302-313.
  • Strenström, B., Rings of Quotients, Springer-Verlag, 1975.
  • Tsai, C. T., Report on Injective Modules, Queen’s Paper in Pure and Applied Mathematics, No.6, Kingston, Ontario: Queen’s University, 1965.
  • Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, 1991. https://doi.org/10.1201/9780203755532
There are 30 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Semra Doğruöz 0000-0002-7928-301X

Azime Tarhan 0000-0002-5363-1936

Project Number FEF-17041
Publication Date December 31, 2021
Submission Date March 17, 2021
Acceptance Date June 5, 2021
Published in Issue Year 2021

Cite

APA Doğruöz, S., & Tarhan, A. (2021). A generalization of purely extending modules relative to a torsion theory. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 1099-1112. https://doi.org/10.31801/cfsuasmas.898637
AMA Doğruöz S, Tarhan A. A generalization of purely extending modules relative to a torsion theory. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):1099-1112. doi:10.31801/cfsuasmas.898637
Chicago Doğruöz, Semra, and Azime Tarhan. “A Generalization of Purely Extending Modules Relative to a Torsion Theory”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 1099-1112. https://doi.org/10.31801/cfsuasmas.898637.
EndNote Doğruöz S, Tarhan A (December 1, 2021) A generalization of purely extending modules relative to a torsion theory. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 1099–1112.
IEEE S. Doğruöz and A. Tarhan, “A generalization of purely extending modules relative to a torsion theory”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 1099–1112, 2021, doi: 10.31801/cfsuasmas.898637.
ISNAD Doğruöz, Semra - Tarhan, Azime. “A Generalization of Purely Extending Modules Relative to a Torsion Theory”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 1099-1112. https://doi.org/10.31801/cfsuasmas.898637.
JAMA Doğruöz S, Tarhan A. A generalization of purely extending modules relative to a torsion theory. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:1099–1112.
MLA Doğruöz, Semra and Azime Tarhan. “A Generalization of Purely Extending Modules Relative to a Torsion Theory”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 1099-12, doi:10.31801/cfsuasmas.898637.
Vancouver Doğruöz S, Tarhan A. A generalization of purely extending modules relative to a torsion theory. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):1099-112.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.