Research Article
BibTex RIS Cite
Year 2022, , 204 - 211, 30.03.2022
https://doi.org/10.31801/cfsuasmas.926981

Abstract

References

  • Aronzajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404. https://doi.org/10.1090/S0002-9947-1950-0051437-7
  • Bakherad, M., Some Berezin number inequalities for operator matrices, Czech. Math. J., 68 (2018), 997-1009. https://doi.org/10.21136/CMJ.2018.0048-17
  • Bakherad, M., Garayev, M.T., Berezin number inequalities for operators, Concr. Oper., 6 (2019), 33-43. https://doi.org/10.1515/conop-2019-0003
  • Berezin, F.A., Covariant and contravariant symbols for operators, Math. USSR-Izv., 6 (1972), 1117-1151. https://doi.org/10.1070/IM1972v006n05ABEH001913
  • Das, N., Sahoo, M., A Generalization of Hardy-Hilbert’s Inequality for non-homogeneous kernel, Bul. Acad. S¸tiinte Repub. Mold. Mat., 3(67) (2011), 29-44.
  • Dragomir, S.S., A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces, Banach J. Math. Anal., 1(2) (2007), 154-175. https://doi.org/10.15352/bjma/1240336213
  • El-Haddad, M., Kittaneh, F., Numerical radius inequalities for Hilbert space operators II, Studia Math., 182 (2007), 133-140. https://doi.org/10.4064/sm182-2-3
  • Garayev, M.T., Gürdal, M., Okudan, A., Hardy-Hilbert’s inequality and a power inequality for Berezin numbers for operators, Math. Inequal. Appl., 3(19) (2016), 883-891. https://doi.org/10.7153/mia-19-64
  • Gustafson, K.E., Rao, D.K.M., Numerical Range, Springer Verlag, New York, 1997.
  • Hajmohamadi, M., Lashkaripour, R., Bakherad, M., Improvements of Berezin number inequalities, Linear Multilinear Algebra, 68(6) (2020), 1218-1229. https://doi.org/10.1080/03081087.2018.1538310
  • Hansen, F., Non-commutative Hardy inequalities, Bull. Lond. Math. Soc., 41(6) (2009), 1009-1016. https://doi.org/10.1112/blms/bdp078
  • Hansen, F., Krulic, K., Pecaric, J., Persson, L.-E., Generalized noncommutative Hardy and Hardy-Hilbert type inequalities, Internat. J. Math., 21(10) (2010), 1283-1295. https://doi.org/10.1142/S0129167X10006501
  • Hardy, G., Littlewood, J.E., Polya, G., Inequalities, 2 nd ed. Cambridge University Press, Cambridge, 1967.
  • Jarczyk, W., Matkowski, J., On Mulholland’s inequality, Proc. Amer. Math. Soc., 130 (2002), 3243-3247. https://doi.org/10.2307/1194150
  • Karaev, M.T., Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal., 238 (2006), 181-192. https://doi.org/10.1016/j.jfa.2006.04.030
  • Karaev, M.T., Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7 (2013), 983-1018. https://doi.org/10.1007/s11785-012-0232-z
  • Kian, M., Hardy-Hilbert type inequalities for Hilbert space operators, Ann. Funct. Anal., 3(2)(2012), 128-134. https://doi.org/10.15352/afa/1399899937
  • Kittaneh, F., Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), 73-80.
  • Kittaneh, F., Moslehian, M.S., Yamazaki, T., Cartesian decomposition and numerical radius inequalities, Linear Algebra Appl., 471 (2015), 46-53. https://doi.org/10.1016/j.laa.2014.12.016
  • Mulholland, H. P., A further generalization of Hilbert double series theorem, J. London Math. Soc., 6 (1931), 100-106. https://doi.org/10.1112/jlms/s1-6.2.100
  • Sahoo, S., Das, N., Mishra, D., Numerical radius inequalities for operator matrices, Adv Oper. Theory, 4(1) (2019), 197-214. https://doi.org/10.15352/aot.1804-1359
  • Sahoo, S., Das, N., Mishra, D., Berezin number and numerical radius inequalities for operators on Hilbert spaces, Adv. Oper. Theory, 5 (2020), 714-727. https://doi.org/10.1007/s43036-019- 00035-8
  • Saitoh, S., Sawano, Y., Theory of reproducing kernels and applications, Springer, 2016.
  • Yamancı, U., Gürdal, M., On numerical radius and Berezin number inequalities for reproducing kernel Hilbert space, New York J. Math., 23 (2017), 1531-1537.
  • Yamancı, U., Gürdal, M., Garayev, M.T., Berezin number inequality for convex function in reproducing kernel Hilbert space, Filomat, 31(18) (2017), 5711-5717. https://doi.org/10.2298/FIL1718711Y
  • Yamancı, U., Garayev, M., Some results related to the Berezin number inequalities, Turk. J. Math., 43(4) (2019), 1940-1952. https://doi.org/10.3906/mat-1812-12
  • Yamancı, U., Garayev, M., Celik, C., Hardy-Hilbert type inequality in reproducing kernel Hilbert space: its applications and related results, Linear Multilinear Algebra, 67(4) (2019), 830-842. https://doi.org/10.1080/03081087.2018.1490688
  • Yamancı, U., Tunç, R., Gürdal, M., Berezin number, Grüss-type inequalities and their applications, Bull. Malays. Math. Sci. Soc., 43(3) (2020), 2287-2296. https://doi.org/10.1007/s40840-019-00804-x
  • Yang, B., A new half-discrete Mulholland-type inequality with parameters, Ann. Funct. Anal., 3(1) (2012), 142-150. https://doi.org/10.15352/afa/1399900031

Operator inequalities in reproducing kernel Hilbert spaces

Year 2022, , 204 - 211, 30.03.2022
https://doi.org/10.31801/cfsuasmas.926981

Abstract

In this paper, by using some classical Mulholland type inequality, Berezin symbols and reproducing kernel technique, we prove the power inequalities for the Berezin number $ber(A)$ for some self-adjoint operators $A$ on ${H}(\Omega )$.  Namely, some Mulholland type inequality for reproducing kernel Hilbert space operators are established. By applying this inequality, we prove that $(ber(A))^{n}\leq C_{1}ber(A^{n})$ for any positive operator $A$ on ${H}(\Omega )$.

References

  • Aronzajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404. https://doi.org/10.1090/S0002-9947-1950-0051437-7
  • Bakherad, M., Some Berezin number inequalities for operator matrices, Czech. Math. J., 68 (2018), 997-1009. https://doi.org/10.21136/CMJ.2018.0048-17
  • Bakherad, M., Garayev, M.T., Berezin number inequalities for operators, Concr. Oper., 6 (2019), 33-43. https://doi.org/10.1515/conop-2019-0003
  • Berezin, F.A., Covariant and contravariant symbols for operators, Math. USSR-Izv., 6 (1972), 1117-1151. https://doi.org/10.1070/IM1972v006n05ABEH001913
  • Das, N., Sahoo, M., A Generalization of Hardy-Hilbert’s Inequality for non-homogeneous kernel, Bul. Acad. S¸tiinte Repub. Mold. Mat., 3(67) (2011), 29-44.
  • Dragomir, S.S., A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces, Banach J. Math. Anal., 1(2) (2007), 154-175. https://doi.org/10.15352/bjma/1240336213
  • El-Haddad, M., Kittaneh, F., Numerical radius inequalities for Hilbert space operators II, Studia Math., 182 (2007), 133-140. https://doi.org/10.4064/sm182-2-3
  • Garayev, M.T., Gürdal, M., Okudan, A., Hardy-Hilbert’s inequality and a power inequality for Berezin numbers for operators, Math. Inequal. Appl., 3(19) (2016), 883-891. https://doi.org/10.7153/mia-19-64
  • Gustafson, K.E., Rao, D.K.M., Numerical Range, Springer Verlag, New York, 1997.
  • Hajmohamadi, M., Lashkaripour, R., Bakherad, M., Improvements of Berezin number inequalities, Linear Multilinear Algebra, 68(6) (2020), 1218-1229. https://doi.org/10.1080/03081087.2018.1538310
  • Hansen, F., Non-commutative Hardy inequalities, Bull. Lond. Math. Soc., 41(6) (2009), 1009-1016. https://doi.org/10.1112/blms/bdp078
  • Hansen, F., Krulic, K., Pecaric, J., Persson, L.-E., Generalized noncommutative Hardy and Hardy-Hilbert type inequalities, Internat. J. Math., 21(10) (2010), 1283-1295. https://doi.org/10.1142/S0129167X10006501
  • Hardy, G., Littlewood, J.E., Polya, G., Inequalities, 2 nd ed. Cambridge University Press, Cambridge, 1967.
  • Jarczyk, W., Matkowski, J., On Mulholland’s inequality, Proc. Amer. Math. Soc., 130 (2002), 3243-3247. https://doi.org/10.2307/1194150
  • Karaev, M.T., Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal., 238 (2006), 181-192. https://doi.org/10.1016/j.jfa.2006.04.030
  • Karaev, M.T., Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7 (2013), 983-1018. https://doi.org/10.1007/s11785-012-0232-z
  • Kian, M., Hardy-Hilbert type inequalities for Hilbert space operators, Ann. Funct. Anal., 3(2)(2012), 128-134. https://doi.org/10.15352/afa/1399899937
  • Kittaneh, F., Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), 73-80.
  • Kittaneh, F., Moslehian, M.S., Yamazaki, T., Cartesian decomposition and numerical radius inequalities, Linear Algebra Appl., 471 (2015), 46-53. https://doi.org/10.1016/j.laa.2014.12.016
  • Mulholland, H. P., A further generalization of Hilbert double series theorem, J. London Math. Soc., 6 (1931), 100-106. https://doi.org/10.1112/jlms/s1-6.2.100
  • Sahoo, S., Das, N., Mishra, D., Numerical radius inequalities for operator matrices, Adv Oper. Theory, 4(1) (2019), 197-214. https://doi.org/10.15352/aot.1804-1359
  • Sahoo, S., Das, N., Mishra, D., Berezin number and numerical radius inequalities for operators on Hilbert spaces, Adv. Oper. Theory, 5 (2020), 714-727. https://doi.org/10.1007/s43036-019- 00035-8
  • Saitoh, S., Sawano, Y., Theory of reproducing kernels and applications, Springer, 2016.
  • Yamancı, U., Gürdal, M., On numerical radius and Berezin number inequalities for reproducing kernel Hilbert space, New York J. Math., 23 (2017), 1531-1537.
  • Yamancı, U., Gürdal, M., Garayev, M.T., Berezin number inequality for convex function in reproducing kernel Hilbert space, Filomat, 31(18) (2017), 5711-5717. https://doi.org/10.2298/FIL1718711Y
  • Yamancı, U., Garayev, M., Some results related to the Berezin number inequalities, Turk. J. Math., 43(4) (2019), 1940-1952. https://doi.org/10.3906/mat-1812-12
  • Yamancı, U., Garayev, M., Celik, C., Hardy-Hilbert type inequality in reproducing kernel Hilbert space: its applications and related results, Linear Multilinear Algebra, 67(4) (2019), 830-842. https://doi.org/10.1080/03081087.2018.1490688
  • Yamancı, U., Tunç, R., Gürdal, M., Berezin number, Grüss-type inequalities and their applications, Bull. Malays. Math. Sci. Soc., 43(3) (2020), 2287-2296. https://doi.org/10.1007/s40840-019-00804-x
  • Yang, B., A new half-discrete Mulholland-type inequality with parameters, Ann. Funct. Anal., 3(1) (2012), 142-150. https://doi.org/10.15352/afa/1399900031
There are 29 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Ulas Yamanci 0000-0002-4709-0993

Publication Date March 30, 2022
Submission Date April 24, 2021
Acceptance Date August 26, 2021
Published in Issue Year 2022

Cite

APA Yamanci, U. (2022). Operator inequalities in reproducing kernel Hilbert spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(1), 204-211. https://doi.org/10.31801/cfsuasmas.926981
AMA Yamanci U. Operator inequalities in reproducing kernel Hilbert spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2022;71(1):204-211. doi:10.31801/cfsuasmas.926981
Chicago Yamanci, Ulas. “Operator Inequalities in Reproducing Kernel Hilbert Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 1 (March 2022): 204-11. https://doi.org/10.31801/cfsuasmas.926981.
EndNote Yamanci U (March 1, 2022) Operator inequalities in reproducing kernel Hilbert spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 1 204–211.
IEEE U. Yamanci, “Operator inequalities in reproducing kernel Hilbert spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 1, pp. 204–211, 2022, doi: 10.31801/cfsuasmas.926981.
ISNAD Yamanci, Ulas. “Operator Inequalities in Reproducing Kernel Hilbert Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/1 (March 2022), 204-211. https://doi.org/10.31801/cfsuasmas.926981.
JAMA Yamanci U. Operator inequalities in reproducing kernel Hilbert spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:204–211.
MLA Yamanci, Ulas. “Operator Inequalities in Reproducing Kernel Hilbert Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 1, 2022, pp. 204-11, doi:10.31801/cfsuasmas.926981.
Vancouver Yamanci U. Operator inequalities in reproducing kernel Hilbert spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(1):204-11.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.