Research Article
BibTex RIS Cite

Parafree metabelian Lie algebras which are determined by parafree Lie algebras

Year 2019, Volume: 68 Issue: 1, 883 - 888, 01.02.2019
https://doi.org/10.31801/cfsuasmas.485878

Abstract

Let L be a Lie algebra. Denote by δ^{k}(L) the k-th term of the derived series of L and by Δ_{w}(L) the intersection of the ideals I of L such that L/I is nilpotent. We prove that if P is a parafree Lie algebra, then the algebra Q=(P/δ^{k}(P))/Δ_{w}(P/δ^{k}(P)), k≥2 is a parafree solvable Lie algebra. Moreover we show that if Q is not free metabelian, then P is not free solvable for k=2.

References

  • Baumslag, G., Groups with the same lower central sequence as a relatively free group I. The groups, Trans. Amer. Math. Soc., 129(1967), 308-321.
  • Baumslag, G., Groups with the same lower central sequence as a relatively free group. II Properties, Trans. Amer. Math. Soc., 142(1969), 507-538.
  • Baumslag, G., Parafree groups, Progress in Math., 248(2005), 1-14.
  • Baumslag, G., and Cleary, S., Parafree one-relator groups, J. Group Theory, 9(2006), 191-201.
  • Baumslag, G., and Cleary, S. And Havas, G., Experimenting with infinite group, Experimental Math., 13(2004), 495-502.
  • Baur, H., Parafreie Liealgebren und homologie, Diss. Eth Nr. 6126, (1978), 60 pp.
  • Baur, H., A note on parafree Lie algebras, Commun. in Alg., 8(1980), No.10 953-960.
  • Ekici, N. and Velioğlu, Z., Unions of Parafree Lie Algebras, Algebra, 2014(2014), Article ID 385397.
  • Ekici, N. and Velioğlu, Z., Direct Limit of Parafree Lie Algebras, Journal of Lie Theory 25(2015), No. 2 477-484.
Year 2019, Volume: 68 Issue: 1, 883 - 888, 01.02.2019
https://doi.org/10.31801/cfsuasmas.485878

Abstract

References

  • Baumslag, G., Groups with the same lower central sequence as a relatively free group I. The groups, Trans. Amer. Math. Soc., 129(1967), 308-321.
  • Baumslag, G., Groups with the same lower central sequence as a relatively free group. II Properties, Trans. Amer. Math. Soc., 142(1969), 507-538.
  • Baumslag, G., Parafree groups, Progress in Math., 248(2005), 1-14.
  • Baumslag, G., and Cleary, S., Parafree one-relator groups, J. Group Theory, 9(2006), 191-201.
  • Baumslag, G., and Cleary, S. And Havas, G., Experimenting with infinite group, Experimental Math., 13(2004), 495-502.
  • Baur, H., Parafreie Liealgebren und homologie, Diss. Eth Nr. 6126, (1978), 60 pp.
  • Baur, H., A note on parafree Lie algebras, Commun. in Alg., 8(1980), No.10 953-960.
  • Ekici, N. and Velioğlu, Z., Unions of Parafree Lie Algebras, Algebra, 2014(2014), Article ID 385397.
  • Ekici, N. and Velioğlu, Z., Direct Limit of Parafree Lie Algebras, Journal of Lie Theory 25(2015), No. 2 477-484.
There are 9 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Zehra Velioğlu 0000-0001-7151-8534

Publication Date February 1, 2019
Submission Date April 12, 2018
Acceptance Date May 28, 2018
Published in Issue Year 2019 Volume: 68 Issue: 1

Cite

APA Velioğlu, Z. (2019). Parafree metabelian Lie algebras which are determined by parafree Lie algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 883-888. https://doi.org/10.31801/cfsuasmas.485878
AMA Velioğlu Z. Parafree metabelian Lie algebras which are determined by parafree Lie algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):883-888. doi:10.31801/cfsuasmas.485878
Chicago Velioğlu, Zehra. “Parafree Metabelian Lie Algebras Which Are Determined by Parafree Lie Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 883-88. https://doi.org/10.31801/cfsuasmas.485878.
EndNote Velioğlu Z (February 1, 2019) Parafree metabelian Lie algebras which are determined by parafree Lie algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 883–888.
IEEE Z. Velioğlu, “Parafree metabelian Lie algebras which are determined by parafree Lie algebras”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 883–888, 2019, doi: 10.31801/cfsuasmas.485878.
ISNAD Velioğlu, Zehra. “Parafree Metabelian Lie Algebras Which Are Determined by Parafree Lie Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 883-888. https://doi.org/10.31801/cfsuasmas.485878.
JAMA Velioğlu Z. Parafree metabelian Lie algebras which are determined by parafree Lie algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:883–888.
MLA Velioğlu, Zehra. “Parafree Metabelian Lie Algebras Which Are Determined by Parafree Lie Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 883-8, doi:10.31801/cfsuasmas.485878.
Vancouver Velioğlu Z. Parafree metabelian Lie algebras which are determined by parafree Lie algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):883-8.

Cited By

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.