BibTex RIS Cite
Year 2018, Volume: 67 Issue: 2, 50 - 63, 01.08.2018

Abstract

References

  • Balbas, A., Balbas, B. and Balbas, R., Good deals and benchmarks in robust portfolio selection, European Journal of Operational Research, 250(2), (2016), 666-678.
  • Ben-Tal, A. and Nemirovski, A., Robust convex optimization, Math. Oper. Res., 23(4), (1998), 769–805.
  • Ben-Tal, A. and Nemirovski, A,. Robust solutions of uncertain linear program,. Oper. Res. Lett., 25(1), (1999), 1–13.
  • Ben-Tal, A. and Nemirovski, A., Lectures on modern convex optimization, Society for Indus- trial and Applied Mathematics (SIAM), Philadelphia, PA, (2001).
  • Black, F. and Litterman, R., Asset allocation: Combining investor views with market equi- librium, Technical report, Goldman, Sachs & Co., Fixed Income Research, (1990).
  • Broadie, M., Computing e¢ cient frontiers using estimated parameters, Ann. Oper. Res., 45, (1993), 21–58.
  • Chopra, V. K., Improving optimization,. J. Investing, (Fall), (1993), 51–59.
  • Chopra, V. K. and Ziemba, W. T., The eğect of errors in means, variances and covariances on optimal portfolio choice, J. Portfolio Manag., (Winter), (1993), 6–11.
  • Chopra, V. K., Hensel, C. R., and Turner, A. L., Massagin mean-variance inputs: Returns from alternative investment strategies in the 1980s, Manag. Sci., 39(7), (1993), 845–855.
  • Engels, M., Portfolio Optimization: beyond Markowitz, Master’s Thesis, Leiden University, (2004).
  • Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M., Robust portfolio opti- mization and management, John Wiley & Sons, (2007).
  • Frost, P. A. and Savarino, J. E., An empirical Bayes approach to e¢ cient portfolio selection, J. Fin. Quan. Anal., 21, (1986), 293–305.
  • Frost, P. A. and Savarino, J. E., For better performance: constrain portfolio weights, J. Portfolio Manag., 15, (1988), 29–34.
  • Goldfarb D., Iyengar G., Robust Portfolio Selection Problems, Mathematics of Operations Research, Vol. 28. No 1, (2003). 1–38.
  • Gregory, C., Dowman, K.D. and Mitra, G., Robust Portfolio and Portfolio Selection: The cost of robustness, European Journal of Operation Research 212, (2011), 417–428.
  • Inan Eroglu, G., Apaydın, A., Robust Optimization in Portfolio Analysis. Ph.D. Thesis, Ankara University, (2013).
  • Inan Eroglu G., Apaydın A., Robust Quadratic Hedging Problem in Incomplete Market: For One Period and Exponential Asset Price Model, Selcuk Journal of Applied Mathematics Vol No 2., (2015), pp. 13–26.
  • Klein, R. W. and Bawa, V. S., The eğect of estimation risk on optimal portfolio choice, J. Finan. Econ., 3, (1976), 215–231.
  • Lintner, J., Valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets, Review of Economics and Statistics, 47, (1965), 13–37.
  • Lot… S., Salahi M. and Mehrdoust, F., Robust portfolio selection with polyhedral ambiguous inputs, Journal of Mathematical Modelling,Vol. 5, No. 1, 2017, pp. 15–26.
  • Lu, C-I., Robust Portfolio Optimization, Ph.D. Thesis, School of Mathematics, The Univer- sity of Birmingham,(2009).
  • Markowitz, H. M., Portfolio Selection, The Journal of Finance. New York, (1952), 77–91.
  • Michaud R.O., E¢ cient Asset Management, Harvard Business School Press, Boston,(1998).
  • Mossin, J., Equilibrium in capital asset markets, Econometrica, 34(4), (1966), 768–783.
  • Nalan G., and Canakoglu, E., Robust portfolio selection problem under temperature uncer- tainty, European Journal of Operational Research, 256 (2), (2017), pp. 500–523.
  • Sharpe, W., Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance, 19(3), (1964), 425–442.
  • Tanaka H., Peijun G and Turksen, B., Portfolio Selection Based on Fuzzy Probabilities and Possibility Distributions, Fuzzy sets and systems, 111.3, (2000), 387-397.
  • Wang, L. and Cheng X., Robust Portfolio Selection under Norm Uncertainty, Journal of Inequalities and Applications, 2016: 1, (2016), 164.
  • Yu, X., Regime dependent robust portfolio selection model, Journal of Interdisciplinary Mathematics. Vol 19: Issue 3, (2016), 517-525.

PORTFOLIO OPTIMIZATION UNDER PARAMETER UNCERTAINTY USING THE RISK AVERSION FORMULA

Year 2018, Volume: 67 Issue: 2, 50 - 63, 01.08.2018

Abstract

The Markowitz portfolio optimization model has certain di¢ culties in practise since real data are rarely certain. The robust optimization isa recently developed method that is used to overcome the uncertainty situation. The technique has been recently suggested in the portfolio selectionproblems. In this study, two kinds of portfolio optimization problems are presented: (i) the risk aversion portfolio optimization problem based on the classical Markowitz framework, and (ii) the max-min counterpart problem basedon the robust optimization framework. In the application, the two models areperformed on a real-world data set obtained from BIST (Borsa Istanbul). Numerical results show that the ob jective function values of the classical solutionand the robust solution are similar to each other. It can be said that the robustmodel, which works as well as the classical model in the uncertainty situations,can be used instead of the classical model and also that the optimal solutionobtained in the uncertainty situation is robust to parameter perturbation

References

  • Balbas, A., Balbas, B. and Balbas, R., Good deals and benchmarks in robust portfolio selection, European Journal of Operational Research, 250(2), (2016), 666-678.
  • Ben-Tal, A. and Nemirovski, A., Robust convex optimization, Math. Oper. Res., 23(4), (1998), 769–805.
  • Ben-Tal, A. and Nemirovski, A,. Robust solutions of uncertain linear program,. Oper. Res. Lett., 25(1), (1999), 1–13.
  • Ben-Tal, A. and Nemirovski, A., Lectures on modern convex optimization, Society for Indus- trial and Applied Mathematics (SIAM), Philadelphia, PA, (2001).
  • Black, F. and Litterman, R., Asset allocation: Combining investor views with market equi- librium, Technical report, Goldman, Sachs & Co., Fixed Income Research, (1990).
  • Broadie, M., Computing e¢ cient frontiers using estimated parameters, Ann. Oper. Res., 45, (1993), 21–58.
  • Chopra, V. K., Improving optimization,. J. Investing, (Fall), (1993), 51–59.
  • Chopra, V. K. and Ziemba, W. T., The eğect of errors in means, variances and covariances on optimal portfolio choice, J. Portfolio Manag., (Winter), (1993), 6–11.
  • Chopra, V. K., Hensel, C. R., and Turner, A. L., Massagin mean-variance inputs: Returns from alternative investment strategies in the 1980s, Manag. Sci., 39(7), (1993), 845–855.
  • Engels, M., Portfolio Optimization: beyond Markowitz, Master’s Thesis, Leiden University, (2004).
  • Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M., Robust portfolio opti- mization and management, John Wiley & Sons, (2007).
  • Frost, P. A. and Savarino, J. E., An empirical Bayes approach to e¢ cient portfolio selection, J. Fin. Quan. Anal., 21, (1986), 293–305.
  • Frost, P. A. and Savarino, J. E., For better performance: constrain portfolio weights, J. Portfolio Manag., 15, (1988), 29–34.
  • Goldfarb D., Iyengar G., Robust Portfolio Selection Problems, Mathematics of Operations Research, Vol. 28. No 1, (2003). 1–38.
  • Gregory, C., Dowman, K.D. and Mitra, G., Robust Portfolio and Portfolio Selection: The cost of robustness, European Journal of Operation Research 212, (2011), 417–428.
  • Inan Eroglu, G., Apaydın, A., Robust Optimization in Portfolio Analysis. Ph.D. Thesis, Ankara University, (2013).
  • Inan Eroglu G., Apaydın A., Robust Quadratic Hedging Problem in Incomplete Market: For One Period and Exponential Asset Price Model, Selcuk Journal of Applied Mathematics Vol No 2., (2015), pp. 13–26.
  • Klein, R. W. and Bawa, V. S., The eğect of estimation risk on optimal portfolio choice, J. Finan. Econ., 3, (1976), 215–231.
  • Lintner, J., Valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets, Review of Economics and Statistics, 47, (1965), 13–37.
  • Lot… S., Salahi M. and Mehrdoust, F., Robust portfolio selection with polyhedral ambiguous inputs, Journal of Mathematical Modelling,Vol. 5, No. 1, 2017, pp. 15–26.
  • Lu, C-I., Robust Portfolio Optimization, Ph.D. Thesis, School of Mathematics, The Univer- sity of Birmingham,(2009).
  • Markowitz, H. M., Portfolio Selection, The Journal of Finance. New York, (1952), 77–91.
  • Michaud R.O., E¢ cient Asset Management, Harvard Business School Press, Boston,(1998).
  • Mossin, J., Equilibrium in capital asset markets, Econometrica, 34(4), (1966), 768–783.
  • Nalan G., and Canakoglu, E., Robust portfolio selection problem under temperature uncer- tainty, European Journal of Operational Research, 256 (2), (2017), pp. 500–523.
  • Sharpe, W., Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance, 19(3), (1964), 425–442.
  • Tanaka H., Peijun G and Turksen, B., Portfolio Selection Based on Fuzzy Probabilities and Possibility Distributions, Fuzzy sets and systems, 111.3, (2000), 387-397.
  • Wang, L. and Cheng X., Robust Portfolio Selection under Norm Uncertainty, Journal of Inequalities and Applications, 2016: 1, (2016), 164.
  • Yu, X., Regime dependent robust portfolio selection model, Journal of Interdisciplinary Mathematics. Vol 19: Issue 3, (2016), 517-525.
There are 29 citations in total.

Details

Other ID JA64SJ37PE
Journal Section Research Article
Authors

Açık Kemaloğlu Sibel This is me

Eroğlu İnan Gültaç This is me

Ayşen Apaydın This is me

Publication Date August 1, 2018
Submission Date August 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 2

Cite

APA Kemaloğlu Sibel, A., İnan Gültaç, E., & Apaydın, A. (2018). PORTFOLIO OPTIMIZATION UNDER PARAMETER UNCERTAINTY USING THE RISK AVERSION FORMULA. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(2), 50-63.
AMA Kemaloğlu Sibel A, İnan Gültaç E, Apaydın A. PORTFOLIO OPTIMIZATION UNDER PARAMETER UNCERTAINTY USING THE RISK AVERSION FORMULA. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2018;67(2):50-63.
Chicago Kemaloğlu Sibel, Açık, Eroğlu İnan Gültaç, and Ayşen Apaydın. “PORTFOLIO OPTIMIZATION UNDER PARAMETER UNCERTAINTY USING THE RISK AVERSION FORMULA”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 2 (August 2018): 50-63.
EndNote Kemaloğlu Sibel A, İnan Gültaç E, Apaydın A (August 1, 2018) PORTFOLIO OPTIMIZATION UNDER PARAMETER UNCERTAINTY USING THE RISK AVERSION FORMULA. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 2 50–63.
IEEE A. Kemaloğlu Sibel, E. İnan Gültaç, and A. Apaydın, “PORTFOLIO OPTIMIZATION UNDER PARAMETER UNCERTAINTY USING THE RISK AVERSION FORMULA”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 2, pp. 50–63, 2018.
ISNAD Kemaloğlu Sibel, Açık et al. “PORTFOLIO OPTIMIZATION UNDER PARAMETER UNCERTAINTY USING THE RISK AVERSION FORMULA”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/2 (August 2018), 50-63.
JAMA Kemaloğlu Sibel A, İnan Gültaç E, Apaydın A. PORTFOLIO OPTIMIZATION UNDER PARAMETER UNCERTAINTY USING THE RISK AVERSION FORMULA. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:50–63.
MLA Kemaloğlu Sibel, Açık et al. “PORTFOLIO OPTIMIZATION UNDER PARAMETER UNCERTAINTY USING THE RISK AVERSION FORMULA”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 2, 2018, pp. 50-63.
Vancouver Kemaloğlu Sibel A, İnan Gültaç E, Apaydın A. PORTFOLIO OPTIMIZATION UNDER PARAMETER UNCERTAINTY USING THE RISK AVERSION FORMULA. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(2):50-63.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.