BibTex RIS Cite
Year 2018, Volume: 67 Issue: 2, 64 - 81, 01.08.2018

Abstract

References

  • P. K. A. Freier, P. Kocher, The secure sockets layer (ssl) protocol version 3.0 (2011). doi: 10.17487/RFC6101. URL <http://www.rfc-editor.org/info/rfc6101>
  • Intel Corporation, Intel Digital Random Number Generator (DRNG): Software Implementa- tion Guide, Revision 1.1 (2012).
  • Comscire quantum number generators. URL http://comscire.com/cart/
  • M. Matsumoto, T. Nishimura, Mersenne twister: A 623-dimensionally equidistributed uni- form pseudo-random number generator, ACM Trans. Model. Comput. Simul. 8 (1) (1998) 3–30. doi:10.1145/272991.272995. URL http://doi.acm.org/10.1145/272991.272995
  • L. Blum, M. Blum, M. Shub, A simple unpredictable pseudo random number generator, SIAM J. Comput. 15 (2) (1986) 364–383. doi:10.1137/0215025. URL http://dx.doi.org/10.1137/0215025
  • A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, A statistical test suite for random and pseudorandom number generators for cryptographic applications, Tech. rep., NIST (2001). URL http://www.nist.gov
  • D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Al- gorithms, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.
  • G. Marsaglia, The Marsaglia random number CDROM including the DIEHARD battery of tests of randomness (1996). URL http://stat.fsu.edu/pub/diehard
  • R. G. Brown, Dieharder: A random number test suite (2013). URL http://www.phy.duke.edu/~rgb/General/dieharder.php
  • P. L’Ecuyer, R. Simard, Testu01: A c library for empirical testing of random number genera
  • tors, ACM Trans. Math. Softw. 33 (4) (2007) 22. doi:http://doi.acm.org/10.1145/1268776. 1268777.
  • Q. H. Dang, Fips 180-4, secure hash standard, Tech. rep., NIST (2012).
  • E-mail address : muhid@metu.edu.tr
  • ORCID: http://orcid.org/0000-0003-2344-503X

MODIFICATIONS OF KNUTH RANDOMNESS TESTS FOR INTEGER AND BINARY SEQUENCES

Year 2018, Volume: 67 Issue: 2, 64 - 81, 01.08.2018

Abstract

Generating random numbers and random sequences that are indistinguishable from truly random sequences is an important task for cryptography. To measure the randomness, statistical randomness tests are applied tothe generated numbers and sequences. Knuth test suite is the one of the …rststatistical randomness suites. This suite, however, is mostly for real numbersequences and the parameters of the tests are not given explicitly.In this work, we review the tests in Knuth Test Suite. We give test parameters in order for the tests to be applicable to integer and binary sequencesand make suggestions on the choice of these parameters. We clarify how theprobabilities used in the tests are calculated according to the parameters andprovide formulas to calculate the probabilities.Also, some tests, like Permutation Test and Max-of-t-test, are modi…ed so that the test can be usedto test integer sequences. Finally, we apply the suite on some widely usedcryptographic random number sources and present the results

References

  • P. K. A. Freier, P. Kocher, The secure sockets layer (ssl) protocol version 3.0 (2011). doi: 10.17487/RFC6101. URL <http://www.rfc-editor.org/info/rfc6101>
  • Intel Corporation, Intel Digital Random Number Generator (DRNG): Software Implementa- tion Guide, Revision 1.1 (2012).
  • Comscire quantum number generators. URL http://comscire.com/cart/
  • M. Matsumoto, T. Nishimura, Mersenne twister: A 623-dimensionally equidistributed uni- form pseudo-random number generator, ACM Trans. Model. Comput. Simul. 8 (1) (1998) 3–30. doi:10.1145/272991.272995. URL http://doi.acm.org/10.1145/272991.272995
  • L. Blum, M. Blum, M. Shub, A simple unpredictable pseudo random number generator, SIAM J. Comput. 15 (2) (1986) 364–383. doi:10.1137/0215025. URL http://dx.doi.org/10.1137/0215025
  • A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, A statistical test suite for random and pseudorandom number generators for cryptographic applications, Tech. rep., NIST (2001). URL http://www.nist.gov
  • D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Al- gorithms, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.
  • G. Marsaglia, The Marsaglia random number CDROM including the DIEHARD battery of tests of randomness (1996). URL http://stat.fsu.edu/pub/diehard
  • R. G. Brown, Dieharder: A random number test suite (2013). URL http://www.phy.duke.edu/~rgb/General/dieharder.php
  • P. L’Ecuyer, R. Simard, Testu01: A c library for empirical testing of random number genera
  • tors, ACM Trans. Math. Softw. 33 (4) (2007) 22. doi:http://doi.acm.org/10.1145/1268776. 1268777.
  • Q. H. Dang, Fips 180-4, secure hash standard, Tech. rep., NIST (2012).
  • E-mail address : muhid@metu.edu.tr
  • ORCID: http://orcid.org/0000-0003-2344-503X
There are 14 citations in total.

Details

Other ID JA52HE58RR
Journal Section Research Article
Authors

Onur Koçak This is me

Fatih Sulak This is me

Ali Doğanaksoy This is me

Muhiddin Uğuz

Publication Date August 1, 2018
Submission Date August 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 2

Cite

APA Koçak, O., Sulak, F., Doğanaksoy, A., Uğuz, M. (2018). MODIFICATIONS OF KNUTH RANDOMNESS TESTS FOR INTEGER AND BINARY SEQUENCES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(2), 64-81.
AMA Koçak O, Sulak F, Doğanaksoy A, Uğuz M. MODIFICATIONS OF KNUTH RANDOMNESS TESTS FOR INTEGER AND BINARY SEQUENCES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2018;67(2):64-81.
Chicago Koçak, Onur, Fatih Sulak, Ali Doğanaksoy, and Muhiddin Uğuz. “MODIFICATIONS OF KNUTH RANDOMNESS TESTS FOR INTEGER AND BINARY SEQUENCES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 2 (August 2018): 64-81.
EndNote Koçak O, Sulak F, Doğanaksoy A, Uğuz M (August 1, 2018) MODIFICATIONS OF KNUTH RANDOMNESS TESTS FOR INTEGER AND BINARY SEQUENCES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 2 64–81.
IEEE O. Koçak, F. Sulak, A. Doğanaksoy, and M. Uğuz, “MODIFICATIONS OF KNUTH RANDOMNESS TESTS FOR INTEGER AND BINARY SEQUENCES”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 2, pp. 64–81, 2018.
ISNAD Koçak, Onur et al. “MODIFICATIONS OF KNUTH RANDOMNESS TESTS FOR INTEGER AND BINARY SEQUENCES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/2 (August 2018), 64-81.
JAMA Koçak O, Sulak F, Doğanaksoy A, Uğuz M. MODIFICATIONS OF KNUTH RANDOMNESS TESTS FOR INTEGER AND BINARY SEQUENCES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:64–81.
MLA Koçak, Onur et al. “MODIFICATIONS OF KNUTH RANDOMNESS TESTS FOR INTEGER AND BINARY SEQUENCES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 2, 2018, pp. 64-81.
Vancouver Koçak O, Sulak F, Doğanaksoy A, Uğuz M. MODIFICATIONS OF KNUTH RANDOMNESS TESTS FOR INTEGER AND BINARY SEQUENCES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(2):64-81.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.