BibTex RIS Cite
Year 2018, Volume: 67 Issue: 2, 291 - 297, 01.08.2018

References

  • R.P. Agarwal, Diğ erence equations and inequalities. Marcel Dekker, Second Edition, New York, 2000.
  • R.P. Agarwal, S.R. Grace, P.J.Y. Wong, Oscillatory behavior of fourth order nonlinear dif- ference equations, New Zealand J. Math., 36 (2007), 101-111.
  • R.P. Agarwal, S.R. Grace, J.V. Manojlovi´c, On the oscillatory properties of certain fourth order nonlinear diğ erence equations, J. Math. Anal. Appl., 322 (2006), 930-956.
  • R.P. Agarwal, J.V. Manojlovi´c, Asymptotic behavior of positive solutions of fourth order nonlinear diğ erence equations, Ukrainian Math. J. 60 (2008), 6-28.
  • R.P. Agarwal, J.V. Manojlovi´c, Asymptotic behavior of nonoscillatory solutions of fourth order nonlinear diğ erence equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., (2009), 155-174.
  • M. Bartusek, Z. Došlá, Asymptotic problems for fourth-order nonlinear diğ erential equations, Bound. Value Probl. (2013), 2013:89, 15 pp.
  • M. Bartusek, M. Cecchi, Z. Dosla, M. Marini, Fourth-order diğ erential equation with deviat- ing argument, Abstr. Appl. Anal. (2012), Art. ID 185242, 17 pp.
  • M. Cecchi, Z. Došlá, M. Marini, Limit behavior for quasilinear diğ erence equations, Proceed- ing of the Sixth International Conference on Diğerence Equation, (2004), 383-390.
  • M. Cecchi, Z. Došlá, M. Marini, I. Vrkoµc, Asymptotic properties for half-linear diğ erence equation, Math. Bohem., 131 (2006), No. 4, 347-363
  • M. Cecchi , Z. Došlá, M. Marini, Positive decreasing solutions of quasi-linear diğ erence equations, Comput. Math. Appl. 42 (2001), no. 10-11, 1401-1410.
  • Z. Došlá, J. Krejµcová, Oscillation of a class of the fourth-order nonlinear diğ erence equations, Adv. Diğerence Equ. (2012), 2012:99, 14 pp.
  • Z. Došlá, J. Krejµcová, Asymptotic and oscillatory properties of the fourth-order nonlinear diğ erence equations, Appl. Math. Comput. 249 (2014), 164-173.
  • J. W. Hooker, W. T. Patula, A second-order nonlinear diğ erence equation: oscillation and asymptotic behavior, J. Math. Anal. Appl. 91 (1983), no. 1, 9-29.
  • R. Jankowski, E. Schmeidel, J. Zonenberg, Oscillatory properties of solutions of the fourth order diğ erence equations with quasidiğ erences, Opuscula Math. 34 (2014), no. 4, 789-797.
  • W. G. Kelley, A. C. Peterson, Diğ erence equations: An introduction with applications, 2nd ed., Academic Press, Boston, 2001.
  • M. Migda, A. Musielak, E. Schmeidel, On a class of fourth-order nonlinear diğ erence equa- tions, Adv. Diğerence Equ. (2004), no. 1, 23-36.
  • W. T. Patula, Growth and oscillation properties of second order linear diğ erence equations, SIAM J. Math. Anal. 10 (1979), no. 1, 55-61.
  • T. Peil, A. Peterson, Asymptotic behavior of solutions of a two term diğ erence equation, Rocky Mountain J. Math. 24 (1994), no. 1, 233-252.
  • E. Schmeidel, Oscillation and nonoscillation theorems for fourth order diğ erence equations, Rocky Mountain J. Math. 33 (2003), no. 3, 1083-1094.
  • Current address : Ankara University, Faculty of Sciences, Dept.of Mathematics, Ankara, TURKEY E-mail address : ekavgaci@ankara.edu.tr ORCID Address: http://orcid.org/0000-0002-8605-4346

OSCILLATION OF NONLINEAR FOURTH-ORDER DIFFERENCE EQUATIONS WITH MIDDLE TERM

Year 2018, Volume: 67 Issue: 2, 291 - 297, 01.08.2018

References

  • R.P. Agarwal, Diğ erence equations and inequalities. Marcel Dekker, Second Edition, New York, 2000.
  • R.P. Agarwal, S.R. Grace, P.J.Y. Wong, Oscillatory behavior of fourth order nonlinear dif- ference equations, New Zealand J. Math., 36 (2007), 101-111.
  • R.P. Agarwal, S.R. Grace, J.V. Manojlovi´c, On the oscillatory properties of certain fourth order nonlinear diğ erence equations, J. Math. Anal. Appl., 322 (2006), 930-956.
  • R.P. Agarwal, J.V. Manojlovi´c, Asymptotic behavior of positive solutions of fourth order nonlinear diğ erence equations, Ukrainian Math. J. 60 (2008), 6-28.
  • R.P. Agarwal, J.V. Manojlovi´c, Asymptotic behavior of nonoscillatory solutions of fourth order nonlinear diğ erence equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., (2009), 155-174.
  • M. Bartusek, Z. Došlá, Asymptotic problems for fourth-order nonlinear diğ erential equations, Bound. Value Probl. (2013), 2013:89, 15 pp.
  • M. Bartusek, M. Cecchi, Z. Dosla, M. Marini, Fourth-order diğ erential equation with deviat- ing argument, Abstr. Appl. Anal. (2012), Art. ID 185242, 17 pp.
  • M. Cecchi, Z. Došlá, M. Marini, Limit behavior for quasilinear diğ erence equations, Proceed- ing of the Sixth International Conference on Diğerence Equation, (2004), 383-390.
  • M. Cecchi, Z. Došlá, M. Marini, I. Vrkoµc, Asymptotic properties for half-linear diğ erence equation, Math. Bohem., 131 (2006), No. 4, 347-363
  • M. Cecchi , Z. Došlá, M. Marini, Positive decreasing solutions of quasi-linear diğ erence equations, Comput. Math. Appl. 42 (2001), no. 10-11, 1401-1410.
  • Z. Došlá, J. Krejµcová, Oscillation of a class of the fourth-order nonlinear diğ erence equations, Adv. Diğerence Equ. (2012), 2012:99, 14 pp.
  • Z. Došlá, J. Krejµcová, Asymptotic and oscillatory properties of the fourth-order nonlinear diğ erence equations, Appl. Math. Comput. 249 (2014), 164-173.
  • J. W. Hooker, W. T. Patula, A second-order nonlinear diğ erence equation: oscillation and asymptotic behavior, J. Math. Anal. Appl. 91 (1983), no. 1, 9-29.
  • R. Jankowski, E. Schmeidel, J. Zonenberg, Oscillatory properties of solutions of the fourth order diğ erence equations with quasidiğ erences, Opuscula Math. 34 (2014), no. 4, 789-797.
  • W. G. Kelley, A. C. Peterson, Diğ erence equations: An introduction with applications, 2nd ed., Academic Press, Boston, 2001.
  • M. Migda, A. Musielak, E. Schmeidel, On a class of fourth-order nonlinear diğ erence equa- tions, Adv. Diğerence Equ. (2004), no. 1, 23-36.
  • W. T. Patula, Growth and oscillation properties of second order linear diğ erence equations, SIAM J. Math. Anal. 10 (1979), no. 1, 55-61.
  • T. Peil, A. Peterson, Asymptotic behavior of solutions of a two term diğ erence equation, Rocky Mountain J. Math. 24 (1994), no. 1, 233-252.
  • E. Schmeidel, Oscillation and nonoscillation theorems for fourth order diğ erence equations, Rocky Mountain J. Math. 33 (2003), no. 3, 1083-1094.
  • Current address : Ankara University, Faculty of Sciences, Dept.of Mathematics, Ankara, TURKEY E-mail address : ekavgaci@ankara.edu.tr ORCID Address: http://orcid.org/0000-0002-8605-4346
There are 20 citations in total.

Details

Other ID JA33FH54BC
Journal Section Research Article
Authors

M.emre Kavgacı This is me

Publication Date August 1, 2018
Submission Date August 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 2

Cite

APA Kavgacı, M. (2018). OSCILLATION OF NONLINEAR FOURTH-ORDER DIFFERENCE EQUATIONS WITH MIDDLE TERM. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(2), 291-297.
AMA Kavgacı M. OSCILLATION OF NONLINEAR FOURTH-ORDER DIFFERENCE EQUATIONS WITH MIDDLE TERM. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2018;67(2):291-297.
Chicago Kavgacı, M.emre. “OSCILLATION OF NONLINEAR FOURTH-ORDER DIFFERENCE EQUATIONS WITH MIDDLE TERM”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 2 (August 2018): 291-97.
EndNote Kavgacı M (August 1, 2018) OSCILLATION OF NONLINEAR FOURTH-ORDER DIFFERENCE EQUATIONS WITH MIDDLE TERM. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 2 291–297.
IEEE M. Kavgacı, “OSCILLATION OF NONLINEAR FOURTH-ORDER DIFFERENCE EQUATIONS WITH MIDDLE TERM”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 2, pp. 291–297, 2018.
ISNAD Kavgacı, M.emre. “OSCILLATION OF NONLINEAR FOURTH-ORDER DIFFERENCE EQUATIONS WITH MIDDLE TERM”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/2 (August 2018), 291-297.
JAMA Kavgacı M. OSCILLATION OF NONLINEAR FOURTH-ORDER DIFFERENCE EQUATIONS WITH MIDDLE TERM. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:291–297.
MLA Kavgacı, M.emre. “OSCILLATION OF NONLINEAR FOURTH-ORDER DIFFERENCE EQUATIONS WITH MIDDLE TERM”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 2, 2018, pp. 291-7.
Vancouver Kavgacı M. OSCILLATION OF NONLINEAR FOURTH-ORDER DIFFERENCE EQUATIONS WITH MIDDLE TERM. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(2):291-7.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.